TY - GEN
T1 - Papillary muscles contraction does not change ventricular wall mechanics
AU - Gurev, Viatcheslav
AU - Korte, James
AU - Hafez, Omar
AU - Fattebert, Jean Luc
AU - Richards, David F.
AU - Rice, John J.
N1 - Publisher Copyright:
© 2015 CCAL.
PY - 2015/2/16
Y1 - 2015/2/16
N2 - Papillary muscles play a crucial role to support valves in the ventricles. However, much less is known about the role in ventricular wall mechanics. Evidence in the literature is inconclusive, showing both of changes in wall strain and indications of no changes in strain after detachment of papillary muscles. We designed a high-resolution 3D model of canine ventricles to investigate the effects of papillary muscles on strain in the regions overlying papillary muscles. An anatomical model was obtained from in-vitro MRI and a realistic fiber geometry assuming transmural rotation in the ventricular wall. Boundary conditions were either: 1) the attached state in which movements of the papillary muscle tips were restricted to the plane parallel to the base of the ventricles; or 2) the detached state where no constraints were placed on the muscle tips. Strains were measured at locations overlying anterior papillary muscle and compared between attached and detached papillary muscle states. In simulation of typical physiological contractions, we found essentially identical pattern in all strain components in the two cases with minor changes near the anterior papillary muscle. Further studies will be required to generalize the results to more anatomical reconstructions and a wider range of conditions.
AB - Papillary muscles play a crucial role to support valves in the ventricles. However, much less is known about the role in ventricular wall mechanics. Evidence in the literature is inconclusive, showing both of changes in wall strain and indications of no changes in strain after detachment of papillary muscles. We designed a high-resolution 3D model of canine ventricles to investigate the effects of papillary muscles on strain in the regions overlying papillary muscles. An anatomical model was obtained from in-vitro MRI and a realistic fiber geometry assuming transmural rotation in the ventricular wall. Boundary conditions were either: 1) the attached state in which movements of the papillary muscle tips were restricted to the plane parallel to the base of the ventricles; or 2) the detached state where no constraints were placed on the muscle tips. Strains were measured at locations overlying anterior papillary muscle and compared between attached and detached papillary muscle states. In simulation of typical physiological contractions, we found essentially identical pattern in all strain components in the two cases with minor changes near the anterior papillary muscle. Further studies will be required to generalize the results to more anatomical reconstructions and a wider range of conditions.
UR - http://www.scopus.com/inward/record.url?scp=84964037898&partnerID=8YFLogxK
U2 - 10.1109/CIC.2015.7408654
DO - 10.1109/CIC.2015.7408654
M3 - Conference contribution
AN - SCOPUS:84964037898
T3 - Computing in Cardiology
SP - 333
EP - 336
BT - Computing in Cardiology Conference 2015, CinC 2015
A2 - Murray, Alan
PB - IEEE Computer Society
T2 - 42nd Computing in Cardiology Conference, CinC 2015
Y2 - 6 September 2015 through 9 September 2015
ER -