TY - JOUR
T1 - Pair distribution function and structure factor of spherical particles
AU - Howell, Rafael C.
AU - Proffen, Thomas
AU - Conradson, Steven D.
PY - 2006
Y1 - 2006
N2 - The availability of neutron spallation-source instruments that provide total scattering powder diffraction has led to an increased application of real-space structure analysis using the pair distribution function. Currently, the analytical treatment of finite size effects within pair distribution refinement procedures is limited. To that end, an envelope function is derived which transforms the pair distribution function of an infinite solid into that of a spherical particle with the same crystal structure. Distributions of particle sizes are then considered, and the associated envelope function is used to predict the particle size distribution of an experimental sample of gold nanoparticles from its pair distribution function alone. Finally, complementing the wealth of existing diffraction analysis, the peak broadening for the structure factor of spherical particles, expressed as a convolution derived from the envelope functions, is calculated exactly for all particle size distributions considered, and peak maxima, offsets, and asymmetries are discussed.
AB - The availability of neutron spallation-source instruments that provide total scattering powder diffraction has led to an increased application of real-space structure analysis using the pair distribution function. Currently, the analytical treatment of finite size effects within pair distribution refinement procedures is limited. To that end, an envelope function is derived which transforms the pair distribution function of an infinite solid into that of a spherical particle with the same crystal structure. Distributions of particle sizes are then considered, and the associated envelope function is used to predict the particle size distribution of an experimental sample of gold nanoparticles from its pair distribution function alone. Finally, complementing the wealth of existing diffraction analysis, the peak broadening for the structure factor of spherical particles, expressed as a convolution derived from the envelope functions, is calculated exactly for all particle size distributions considered, and peak maxima, offsets, and asymmetries are discussed.
UR - http://www.scopus.com/inward/record.url?scp=33644820189&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.73.094107
DO - 10.1103/PhysRevB.73.094107
M3 - Article
AN - SCOPUS:33644820189
SN - 1098-0121
VL - 73
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 9
M1 - 094107
ER -