PABO: Pseudo agent-based multi-objective Bayesian hyperparameter optimization for efficient neural accelerator design

Maryam Parsa, Aayush Ankit, Amirkoushyar Ziabari, Kaushik Roy

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

21 Scopus citations

Abstract

The ever increasing computational cost of Deep Neural Networks (DNN) and the demand for energy efficient hardware for DNN acceleration has made accuracy and hardware cost co-optimization for DNNs tremendously important, especially for edge devices. Owing to the large parameter space and cost of evaluating each parameter in the search space, manually tuning of DNN hyperparameters is impractical. Automatic joint DNN and hardware hyperparameter optimization is indispensable for such problems. Bayesian optimization-based approaches have shown promising results for hyperparameter optimization of DNNs. However, most of these techniques have been developed without considering the underlying hardware, thereby leading to inefficient designs. Further, the few works that perform joint optimization are not generalizable and mainly focus on CMOS-based architectures. In this work, we present a novel pseudo agent-based multiobjective hyperparameter optimization (PABO) for maximizing the DNN performance while obtaining low hardware cost. Compared to the existing methods, our work poses a theoretically different approach for joint optimization of accuracy and hardware cost and focuses on memristive crossbar based accelerators. PABO uses a supervisor agent to establish connections between the posterior Gaussian distribution models of network accuracy and hardware cost requirements. The agent reduces the mathematical complexity of the co-optimization problem by removing unnecessary computations and updates of acquisition functions, thereby achieving significant speed-ups for the optimization procedure. PABO outputs a Pareto frontier that underscores the trade-offs between designing high-accuracy and hardware efficiency. Our results demonstrate a superior performance compared to the state-of-the-art methods both in terms of accuracy and computational speed (?100x speed up).

Original languageEnglish
Title of host publication2019 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2019 - Digest of Technical Papers
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728123509
DOIs
StatePublished - Nov 2019
Event38th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2019 - Westin Westminster, United States
Duration: Nov 4 2019Nov 7 2019

Publication series

NameIEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
Volume2019-November
ISSN (Print)1092-3152

Conference

Conference38th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2019
Country/TerritoryUnited States
CityWestin Westminster
Period11/4/1911/7/19

Fingerprint

Dive into the research topics of 'PABO: Pseudo agent-based multi-objective Bayesian hyperparameter optimization for efficient neural accelerator design'. Together they form a unique fingerprint.

Cite this