TY - GEN
T1 - Oxidation behavior of prospective silicon nitride materials for advanced microturbine applications
AU - Schenk, Bjoem
AU - Strangman, Tom
AU - Opila, Elizabeth J.
AU - Robinson, R. Craig
AU - Fox, Dennis S.
AU - Klemm, Hagen
AU - Taut, Christine
AU - More, Karren
AU - Torterelli, Peter
PY - 2001
Y1 - 2001
N2 - Various laboratory tests have shown that high-pressure water vapor environments combined with elevated temperatures and intermediate gas velocities (current facilities limited to about 50 m/s) can cause grain boundary degradation and material recession in silica formers. Recent tests include burner rig testing conducted by NASA [1], Honeywell Engines & Systems [2], Siemens Power Generation [3], CRIEPI in Japan [4, 5], "Keiser rig" testing at Oak Ridge National Laboratory (ORNL) [6], and engine testing in the Allison 501K industrial gas turbine [7]. This paper presents a summary of oxidation test data of candidate silicon nitride materials for advanced microturbine applications. These data are of interest to microturbine component designers in order to determine the limits of safe unprotected component operation with respect to the given turbine environment, as well as to understand the behavior of ceramic microturbine components once local spallation of the protective environmental barrier coating has occurred. This paper intends to give materials and engine development engineers some guidance with respect to the different test facility capabilities and the prevailing oxidation/recession mechanisms to better understand/interprete the oxidation test results when developing new ceramic material compositions and environmental barrier coating systems.
AB - Various laboratory tests have shown that high-pressure water vapor environments combined with elevated temperatures and intermediate gas velocities (current facilities limited to about 50 m/s) can cause grain boundary degradation and material recession in silica formers. Recent tests include burner rig testing conducted by NASA [1], Honeywell Engines & Systems [2], Siemens Power Generation [3], CRIEPI in Japan [4, 5], "Keiser rig" testing at Oak Ridge National Laboratory (ORNL) [6], and engine testing in the Allison 501K industrial gas turbine [7]. This paper presents a summary of oxidation test data of candidate silicon nitride materials for advanced microturbine applications. These data are of interest to microturbine component designers in order to determine the limits of safe unprotected component operation with respect to the given turbine environment, as well as to understand the behavior of ceramic microturbine components once local spallation of the protective environmental barrier coating has occurred. This paper intends to give materials and engine development engineers some guidance with respect to the different test facility capabilities and the prevailing oxidation/recession mechanisms to better understand/interprete the oxidation test results when developing new ceramic material compositions and environmental barrier coating systems.
UR - http://www.scopus.com/inward/record.url?scp=84905748831&partnerID=8YFLogxK
U2 - 10.1115/2001-GT-0459
DO - 10.1115/2001-GT-0459
M3 - Conference contribution
AN - SCOPUS:84905748831
SN - 9780791878538
T3 - Proceedings of the ASME Turbo Expo
BT - Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2001: Power for Land, Sea, and Air, GT 2001
Y2 - 4 June 2001 through 7 June 2001
ER -