Abstract
The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field (B0 = 12.2 T), compact (R0 = 1.85 m, a = 0.57 m), superconducting, D-T tokamak with the goal of producing fusion gain Q > 2 from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of Q > 2 is achievable with conservative physics assumptions (H98,y2 = 0.7) and, with the nominal assumption of H98,y2 = 1, SPARC is projected to attain Q ≈ 11 and Pfusion ≈ 140 MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density (〈ne〉 ≈ 3 × 1020 m−3), high temperature (〈Te〉 ≈ 7 keV) and high power density (Pfusion/Vplasma ≈ 7 MW m−3) relevant to fusion power plants. SPARC’s place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
Original language | English |
---|---|
Article number | 865860502 |
Journal | Journal of Plasma Physics |
Volume | 86 |
Issue number | 5 |
DOIs | |
State | Published - 2020 |
Funding
This work was funded by Commonwealth Fusion Systems. Parts of this work were also funded by CFS under MIT PSFC RPP005; under INFUSE grant 2702 awarded to CFS (INFUSE is a DOE SC FES private–public partnership programme); by CFS through ORNL Strategic Partnership Project no. NFE-19-07728; by the SPARC Fellowship Fund; by the S. W. Ing (1953) Memorial Fund, a gift of Mimi and Frank Slaughter; by the National Science Foundation Graduate Research Fellowship under grant no. 1122374; and by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Numbers DE-SC0014264, DE-SC0018287 and DE-AC02-09CH11466.
Keywords
- fusion plasma
- plasma confinement
- plasma devices