Overview of activities for the wendelstein 7-X scraper element collaboration

A. Lumsdaine, T. Bjorholm, J. Harris, D. McGinnis, J. D. Lore, J. Boscary, J. Tretter, E. Clark, K. Ekici, J. Fellinger, H. Holbe, H. Neilson, P. Titus, G. Wurden

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The Wendelstein 7-X (W7-X) stellarator is in final stages of commissioning, and will begin operation in the last half of 2015. In this first phase the machine will operate with a limiter, and will be restricted to low power and short pulse. But in 2019, plans are for an actively cooled divertor to be installed, and the machine will operate in steady-state at full power. Recently, plasma simulations have indicated that, in this final operational phase, a bootstrap current may evolve in certain scenarios. This will cause the sensitive ends of the divertor target to be overloaded beyond their qualified limit. A high heat flux scraper element (HHF-SE) has been proposed in order to take up some of the convective flux and reduce the load on the divertor. In order to examine whether the HHF-SE will be able to effectively reduce the plasma flux in the divertor region of concern, and to determine how the pumping effectiveness will be affected by such a component, it is planned to include a test divertor unit scraper element (TDU-SE) in 2017 during an earlier operational phase. Several US fusion energy science laboratories have been involved in the design, analysis (structural and thermal finite element, as well as computational fluid dynamics), plasma simulation, planning, prototyping, and diagnostic development around the scraper element program (both TDU-SE and HHF-SE). This paper presents an overview of all of these activities, and their current status.

Original languageEnglish
Title of host publication2015 IEEE 26th Symposium on Fusion Engineering, SOFE 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479982646
DOIs
StatePublished - May 31 2016
Event26th IEEE Symposium on Fusion Engineering, SOFE 2015 - Austin, United States
Duration: May 31 2015Jun 4 2015

Publication series

NameProceedings - Symposium on Fusion Engineering
Volume2016-May

Conference

Conference26th IEEE Symposium on Fusion Engineering, SOFE 2015
Country/TerritoryUnited States
CityAustin
Period05/31/1506/4/15

Keywords

  • Wendelstein 7X
  • divertor
  • high heat-flux
  • modeling and simulation

Fingerprint

Dive into the research topics of 'Overview of activities for the wendelstein 7-X scraper element collaboration'. Together they form a unique fingerprint.

Cite this