Out of memory SVD solver for big data

Azzam Haidar, Khairul Kabir, Diana Fayad, Stanimire Tomov, Jack Dongarra

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Many applications-from data compression to numerical weather prediction and information retrieval-need to compute large dense singular value decompositions (SVD). When the problems are too large to fit into the computer's main memory, specialized out-of-core algorithms that use disk storage are required. A typical example is when trying to analyze a large data set through tools like MATLAB or Octave, but the data is just too large to be loaded. To overcome this, we designed a class of out-of-memory (OOM) algorithms to reduce, as well as overlap communication with computation. Of particular interest is OOM algorithms for matrices of size m × n, where m >> n or m << n, e.g., corresponding to cases of too many variables, or too many observations. To design OOM SVDs, we first study the communications cost for the SVD techniques as well as for the QR/LQ factorization followed by SVD. We present the theoretical analysis about the data movement cost and strategies to design OOM SVD algorithms. We show performance results for multicore architecture that illustrate our theoretical findings and match our performance models. Moreover, our experimental results show the feasibility and superiority of the OOM SVD.

Original languageEnglish
Title of host publication2017 IEEE High Performance Extreme Computing Conference, HPEC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538634721
DOIs
StatePublished - Oct 30 2017
Event2017 IEEE High Performance Extreme Computing Conference, HPEC 2017 - Waltham, United States
Duration: Sep 12 2017Sep 14 2017

Publication series

Name2017 IEEE High Performance Extreme Computing Conference, HPEC 2017

Conference

Conference2017 IEEE High Performance Extreme Computing Conference, HPEC 2017
Country/TerritoryUnited States
CityWaltham
Period09/12/1709/14/17

Funding

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. The work was also partially supported by Nvidia and NSF under grant No. 1514406.

Fingerprint

Dive into the research topics of 'Out of memory SVD solver for big data'. Together they form a unique fingerprint.

Cite this