ORNL Progress in Disruption Mitigation Technology in Support of ITER

L. R. Baylor, T. E. Gebhart, S. J. Meitner, D. A. Rasmussen, C. Barbier, S. K. Combs, N. Commaux, P. W. Fisher, M. J. Gouge, T. C. Jernigan

Research output: Contribution to journalArticlepeer-review

Abstract

The mitigation of plasma disruptions in tokamaks has become a very important topic in magnetic fusion research, motived by the potential challenges that may occur in ITER disruptions due to the high magnetic field and high plasma current. Such disruptions can have a deleterious effect on the internal components due to the fast dissipation of the plasma thermal energy and the magnetic stored energy leading to large forces, as well as the possible formation of several megaamperes of energetic runaway electrons during the current quench. Oak Ridge National Laboratory has been developing and deploying technology to inject material into the plasma to rapidly radiate the thermal energy and start a fast plasma current ramp down to dissipate the magnetic stored energy. The choice of materials to inject and the injection technology have evolved over the past decades to arrive at the present systems planned for ITER based on cryogenic pellets of hydrogen-neon mixtures for thermal mitigation and hydrogen pellets for runaway electron mitigation. This scheme injects shattered cryogenic material into the plasma from pellets formed in situ in a pipe gun and fired onto angled metal surfaces at the end of the injection line just before entering the plasma. In this paper, we describe the evolution of schemes and technologies that have been employed for disruption mitigation and runaway electron prevention and dissipation, discuss how they have performed in present-day experiments, and give the outlook for the use of this technology in a burning plasma and how it may continue to evolve in the future.

Original languageEnglish
Pages (from-to)1082-1091
Number of pages10
JournalFusion Science and Technology
Volume79
Issue number8
DOIs
StatePublished - 2023

Funding

This work was supported by ORNL, which is managed by UT-Battelle, LLC for the U.S. Department of Energy (DOE) under DE-AC05-00OR22725. This paper is dedicated to the memory of Paul B. Parks who inspired the development of much of the technology for disruption mitigation. This paper has been authored by UT-Battelle, LLC under contract DE-AC05-00OR22725 with the DOE. The U.S. government retains and the publisher, by accepting this paper for publication, acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this paper, or allow others to do so, for U.S. government purposes. DOE will provide public access to the results of federally sponsored research in accordance with the DOE Public Access Plan: http://energy.gov/downloads/doe-public-access-plan). This work was supported by ORNL, which is managed by UT-Battelle, LLC for the U.S. Department of Energy (DOE) under DE-AC05-00OR22725. This paper is dedicated to the memory of Paul B. Parks who inspired the development of much of the technology for disruption mitigation.

FundersFunder number
U.S. Government
U.S. Department of EnergyDE-AC05-00OR22725
Oak Ridge National Laboratory

    Keywords

    • Plasma disruption
    • massive gas injection
    • shattered pellet

    Fingerprint

    Dive into the research topics of 'ORNL Progress in Disruption Mitigation Technology in Support of ITER'. Together they form a unique fingerprint.

    Cite this