Abstract
Upcoming exascale applications could introduce significant data management challenges due to their large sizes, dynamic work distribution, and involvement of accelerators such as graphical processing units, GPUs. In this work, we explore the performance of reading and writing operations involving one such scientific application on two different supercomputers. Our tests showed that the Adaptable Input and Output System, ADIOS, was able to achieve speeds over 1TB/s, a significant fraction of the peak I/O performance on Summit. We also demonstrated the querying functionality in ADIOS could effectively support common selective data analysis operations, such as conditional histograms. In tests, this query mechanism was able to reduce the execution time by a factor of five. More importantly, ADIOS data management framework allows us to achieve these performance improvements with only a minimal amount of coding effort.
Original language | English |
---|---|
Article number | 012042 |
Journal | Journal of Physics: Conference Series |
Volume | 2224 |
Issue number | 1 |
DOIs | |
State | Published - Apr 19 2022 |
Event | 2021 2nd International Symposium on Automation, Information and Computing, ISAIC 2021 - Virtual, Online Duration: Dec 3 2021 → Dec 6 2021 |
Funding
This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware technology, to support the nation’s exascale computing imperative. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725 and of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231. This work was partially funded by the Center of Advanced Systems Understanding (CASUS), which is financed by Germany's Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament.