TY - GEN
T1 - Optimizing Multi-Robot Placements for Wire Arc Additive Manufacturing
AU - Bhatt, Prahar M.
AU - Nycz, Andrzej
AU - Gupta, Satyandra K.
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Wire arc additive manufacturing is a metal additive manufacturing process in which the material is deposited using arc welding technology. It is gaining popularity due to high material deposition rates and faster build time. It is en-abled using robotic manipulators and can build relatively large-scale parts faster when compared with other metal additive manufacturing processes. However, the size of the large-scale parts is limited by the size of the industrial manipulator being used for the process. This limitation is overcome by using a fixed configuration multi-robot cell in which manipulators work cooperatively to build large-scale parts quickly. A fixed multi-robot cell with closely spaced industrial manipulators has high flexibility, but it restricts the part size that can be built. If the manipulators are spread out, the cell loses its flexibility but can build relatively larger parts. This issue can be avoided by using larger size manipulators, which are expensive, or by moving the modest size manipulators based on the part geometries. This paper presents a novel algorithm to generate multi-robot placements for different part geometries to be built using wire arc additive manufacturing. Furthermore, the algorithm hierarchically optimizes the build time and the inverse kinematics consistency in robot paths to improve the process efficiency and part quality. We compare the results with fixed multi-robot cells and provide insights to users to make an informed decision on whether to use a fixed or a flexible multi-robot cell for wire arc additive manufacturing.
AB - Wire arc additive manufacturing is a metal additive manufacturing process in which the material is deposited using arc welding technology. It is gaining popularity due to high material deposition rates and faster build time. It is en-abled using robotic manipulators and can build relatively large-scale parts faster when compared with other metal additive manufacturing processes. However, the size of the large-scale parts is limited by the size of the industrial manipulator being used for the process. This limitation is overcome by using a fixed configuration multi-robot cell in which manipulators work cooperatively to build large-scale parts quickly. A fixed multi-robot cell with closely spaced industrial manipulators has high flexibility, but it restricts the part size that can be built. If the manipulators are spread out, the cell loses its flexibility but can build relatively larger parts. This issue can be avoided by using larger size manipulators, which are expensive, or by moving the modest size manipulators based on the part geometries. This paper presents a novel algorithm to generate multi-robot placements for different part geometries to be built using wire arc additive manufacturing. Furthermore, the algorithm hierarchically optimizes the build time and the inverse kinematics consistency in robot paths to improve the process efficiency and part quality. We compare the results with fixed multi-robot cells and provide insights to users to make an informed decision on whether to use a fixed or a flexible multi-robot cell for wire arc additive manufacturing.
UR - http://www.scopus.com/inward/record.url?scp=85136322984&partnerID=8YFLogxK
U2 - 10.1109/ICRA46639.2022.9812318
DO - 10.1109/ICRA46639.2022.9812318
M3 - Conference contribution
AN - SCOPUS:85136322984
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 7942
EP - 7948
BT - 2022 IEEE International Conference on Robotics and Automation, ICRA 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 39th IEEE International Conference on Robotics and Automation, ICRA 2022
Y2 - 23 May 2022 through 27 May 2022
ER -