TY - GEN
T1 - Optimizing Individualized Treatment Planning for Parkinson's Disease Using Deep Reinforcement Learning
AU - Watts, Jeremy
AU - Khojandi, Anahita
AU - Vasudevan, Rama
AU - Ramdhani, Ritesh
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/7
Y1 - 2020/7
N2 - More than one million people currently live with Parkinson's Disease (PD) in the U.S. alone. Medications, such as levodopa, can help manage PD symptoms. However, medication treatment planning is generally based on patient history and limited interaction between physicians and patients during office visits. This limits the extent of benefit that may be derived from the treatment as disease/patient characteristics are generally non-stationary. Wearable sensors that provide continuous monitoring of various symptoms, such as bradykinesia and dyskinesia, can enhance symptom management. However, using such data to overhaul the current static medication treatment planning approach and prescribe personalized medication timing and dosage that accounts for patient/care-giver/physician feedback/preferences remains an open question. We develop a model to prescribe timing and dosage of medications, given the motor fluctuation data collected using wearable sensors in real-time. We solve the resulting model using deep reinforcement learning (DRL). The prescribed policy determines the optimal treatment plan that minimizes patient's symptoms. Our results show that the model-prescribed policy outperforms the static a priori treatment plan in improving patients' symptoms, providing a proof-of-concept that DRL can augment medical decision making for treatment planning of chronic disease patients.
AB - More than one million people currently live with Parkinson's Disease (PD) in the U.S. alone. Medications, such as levodopa, can help manage PD symptoms. However, medication treatment planning is generally based on patient history and limited interaction between physicians and patients during office visits. This limits the extent of benefit that may be derived from the treatment as disease/patient characteristics are generally non-stationary. Wearable sensors that provide continuous monitoring of various symptoms, such as bradykinesia and dyskinesia, can enhance symptom management. However, using such data to overhaul the current static medication treatment planning approach and prescribe personalized medication timing and dosage that accounts for patient/care-giver/physician feedback/preferences remains an open question. We develop a model to prescribe timing and dosage of medications, given the motor fluctuation data collected using wearable sensors in real-time. We solve the resulting model using deep reinforcement learning (DRL). The prescribed policy determines the optimal treatment plan that minimizes patient's symptoms. Our results show that the model-prescribed policy outperforms the static a priori treatment plan in improving patients' symptoms, providing a proof-of-concept that DRL can augment medical decision making for treatment planning of chronic disease patients.
UR - http://www.scopus.com/inward/record.url?scp=85091046625&partnerID=8YFLogxK
U2 - 10.1109/EMBC44109.2020.9175311
DO - 10.1109/EMBC44109.2020.9175311
M3 - Conference contribution
AN - SCOPUS:85091046625
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 5406
EP - 5409
BT - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Y2 - 20 July 2020 through 24 July 2020
ER -