Optimizing Individualized Treatment Planning for Parkinson's Disease Using Deep Reinforcement Learning

Jeremy Watts, Anahita Khojandi, Rama Vasudevan, Ritesh Ramdhani

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

21 Scopus citations

Abstract

More than one million people currently live with Parkinson's Disease (PD) in the U.S. alone. Medications, such as levodopa, can help manage PD symptoms. However, medication treatment planning is generally based on patient history and limited interaction between physicians and patients during office visits. This limits the extent of benefit that may be derived from the treatment as disease/patient characteristics are generally non-stationary. Wearable sensors that provide continuous monitoring of various symptoms, such as bradykinesia and dyskinesia, can enhance symptom management. However, using such data to overhaul the current static medication treatment planning approach and prescribe personalized medication timing and dosage that accounts for patient/care-giver/physician feedback/preferences remains an open question. We develop a model to prescribe timing and dosage of medications, given the motor fluctuation data collected using wearable sensors in real-time. We solve the resulting model using deep reinforcement learning (DRL). The prescribed policy determines the optimal treatment plan that minimizes patient's symptoms. Our results show that the model-prescribed policy outperforms the static a priori treatment plan in improving patients' symptoms, providing a proof-of-concept that DRL can augment medical decision making for treatment planning of chronic disease patients.

Original languageEnglish
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5406-5409
Number of pages4
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period07/20/2007/24/20

Fingerprint

Dive into the research topics of 'Optimizing Individualized Treatment Planning for Parkinson's Disease Using Deep Reinforcement Learning'. Together they form a unique fingerprint.

Cite this