Optimization of ferrite core to reduce the core loss in double-D pad of wireless charging system for electric vehicles

Mostak Mohammad, Seungdeog Choi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

42 Scopus citations

Abstract

In this paper, an optimized core structure is proposed for the double-D (DD) power pad to reduce its core loss in a wireless charging system for Electric and Plug-in Hybrid Electric Vehicle (EV/PHEV) application. At around 85 kHz operating frequency, the core loss is found to be one of the most significant loss in typical wireless charging system of high power application. The core loss in power ferrite mainly depends on the operating frequency and magnetic field density in the core. The frequency is usaully fixed for certain appication, therefore, the magnetic field density in the core is be to optimized to reduce the loss. The magnetic field density in core of a double-D (DD) pad has very different pattern compared to unpolar pad; therefore traditional bar or plate core does not provide the optimum performance considering core loss. In this paper, an optimized core structure is proposed to make the flux density uniform in the core and minimize its loss. The proposed optimized model is simulated in finite element analysis (FEA), and compared with traditional flat type core. Finally, the proposed model is verified through a 3.2kW wireless Double-D (DD) type wireless charging pad.

Original languageEnglish
Title of host publicationAPEC 2018 - 33rd Annual IEEE Applied Power Electronics Conference and Exposition
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1350-1356
Number of pages7
ISBN (Electronic)9781538611807
DOIs
StatePublished - Apr 18 2018
Externally publishedYes
Event33rd Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2018 - San Antonio, United States
Duration: Mar 4 2018Mar 8 2018

Publication series

NameConference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC
Volume2018-March

Conference

Conference33rd Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2018
Country/TerritoryUnited States
CitySan Antonio
Period03/4/1803/8/18

Keywords

  • Bipolar power pad
  • Core loss
  • Eddy loss
  • Electric vehicle
  • Ferrite
  • Inductive charging
  • Shield
  • Wireless power transfer

Fingerprint

Dive into the research topics of 'Optimization of ferrite core to reduce the core loss in double-D pad of wireless charging system for electric vehicles'. Together they form a unique fingerprint.

Cite this