Optimal Sizing of a Dynamic Wireless Power Transfer System for Highway Applications

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Scopus citations

Abstract

Inductive power transfer has been proposed as a solution to power future automated and electrified highways. In this study, an interoperable wireless charging system is sized so that a light and a heavy-duty vehicle can travel at or near charge-sustaining mode at high speeds using an optimization approach. The conflicting objectives of minimizing the power ratings and the number of inverters, coupler materials, and overall system coverages result in a Pareto Front that is presented in this paper. It is found that a system using short transmitting couplers can ensure high efficiency power transfers to light-duty vehicles (LDVs) and still maintain charge-sustaining operation of heavy-duty vehicles (HDVs). The findings are contextualized by a brief discussion of other aspects relating to the implementation of this technology on roadways such as the impact of the cost of time and travel speeds.

Original languageEnglish
Title of host publication2018 IEEE Transportation and Electrification Conference and Expo, ITEC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages248-253
Number of pages6
ISBN (Print)9781538630488
DOIs
StatePublished - Aug 28 2018
Event2018 IEEE Transportation and Electrification Conference and Expo, ITEC 2018 - Long Beach, United States
Duration: Jun 13 2018Jun 15 2018

Publication series

Name2018 IEEE Transportation and Electrification Conference and Expo, ITEC 2018

Conference

Conference2018 IEEE Transportation and Electrification Conference and Expo, ITEC 2018
Country/TerritoryUnited States
CityLong Beach
Period06/13/1806/15/18

Funding

This manuscript has been authored by the Oak Ridge National Laboratory operated by the UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Fingerprint

Dive into the research topics of 'Optimal Sizing of a Dynamic Wireless Power Transfer System for Highway Applications'. Together they form a unique fingerprint.

Cite this