Abstract
Surface-enhanced Raman spectroscopy (SERS) can sense some molecules in a nondestructive manner. Using SERS, we investigate the shifts in the Raman peaks of polypyrrole (PPy) with two different coordinated silver (Ag) structures, Ag nanoparticles (NPs) and Ag dendrite film. The SERS spectrum of PPy with Ag NPs presents a ring-stretching peak that is red-shifted compared to the ring-stretching peak in the Raman spectrum of PPy. In contrast, the spectrum of the PPy with the Ag dendrite film exhibits a blue-shifted ring stretching peak. The various coordinated Ag nanostructures result in opposite Raman shifts of the ring stretching peak; this phenomenon has been investigated and confirmed by density functional theory (DFT) calculations of the Raman shift of the pyrrole (Py) molecule with a Ag layer (SERS of PPy with Ag NPs) and that of a charge-transferred Py molecule (SERS of PPy with Ag dendrite films). This result demonstrates that DFT calculations can be an effective tool to scrutinize Raman shifts in SERS.
Original language | English |
---|---|
Pages (from-to) | 1300-1306 |
Number of pages | 7 |
Journal | Journal of Physical Chemistry Letters |
Volume | 13 |
Issue number | 5 |
DOIs | |
State | Published - Feb 10 2022 |
Externally published | Yes |