Operating parameter based wirebond model for a power module

Lakshmi Gopi Reddy, Leon M. Tolbert, Burak Ozpineci

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Lifetime estimation of power semiconductors for various applications has gained technical importance. The main failures in high power semiconductors are caused by thermo-mechanical fatigue, mainly in solder and wirebonds, due to different coefficients of thermal expansions of the various packaging materials. Most of the lifetime models do not take all the operating parameters into account. There is a need to develop a generalized lifetime model specific to failure mechanisms that account for all of the operating parameters in an application. This paper presents finite element based stress simulations for varying operating parameters (current, temperature, etc.) for a fixed dimension wire.

Original languageEnglish
Title of host publicationAPEC 2014 - 29th Annual IEEE Applied Power Electronics Conference and Exposition
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3502-3506
Number of pages5
ISBN (Print)9781479923250
DOIs
StatePublished - 2014
Event29th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2014 - Fort Worth, TX, United States
Duration: Mar 16 2014Mar 20 2014

Publication series

NameConference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC

Conference

Conference29th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2014
Country/TerritoryUnited States
CityFort Worth, TX
Period03/16/1403/20/14

Fingerprint

Dive into the research topics of 'Operating parameter based wirebond model for a power module'. Together they form a unique fingerprint.

Cite this