Open loop Kelvin probe force microscopy with single and multi-frequency excitation

L. Collins, J. I. Kilpatrick, S. A.L. Weber, A. Tselev, I. V. Vlassiouk, I. N. Ivanov, S. Jesse, S. V. Kalinin, B. J. Rodriguez

Research output: Contribution to journalArticlepeer-review

62 Scopus citations

Abstract

Conventional Kelvin probe force microscopy (KPFM) relies on closed loop (CL) bias feedback for the determination of surface potential (SP). However, SP measured by CL-KPFM has been shown to be strongly influenced by the choice of measurement parameters due to non-electrostatic contributions to the input signal of the bias feedback loop. This often leads to systematic errors of several hundred mV and can also result in topographical crosstalk. Here, open loop (OL)-KPFM modes are investigated as a means of obtaining a quantitative, crosstalk free measurement of the SP of graphene grown on Cu foil, and are directly contrasted with CL-KPFM. OL-KPFM operation is demonstrated in both single and multi-frequency excitation regimes, yielding quantitative SP measurements. The SP difference between single and multilayer graphene structures using OL-KPFM was found to be 63 ± 11 mV, consistent with values previously reported by CL-KPFM. Furthermore, the same relative potential difference between Al2O3-coated graphene and Al 2O3-coated Cu was observed using both CL and OL techniques. We observed an offset of 55 mV between absolute SP values obtained by OL and CL techniques, which is attributed to the influence of non-electrostatic contributions to the input of the bias feedback used in CL-KPFM.

Original languageEnglish
Article number475702
JournalNanotechnology
Volume24
Issue number47
DOIs
StatePublished - Nov 29 2013

Fingerprint

Dive into the research topics of 'Open loop Kelvin probe force microscopy with single and multi-frequency excitation'. Together they form a unique fingerprint.

Cite this