On the use of the genetic algorithm filter-based feature selection technique for satellite precipitation estimation

Majid Mahrooghy, Nicolas H. Younan, Valentine G. Anantharaj, James Aanstoos, Shantia Yarahmadian

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

A feature selection technique is used to enhance the precipitation estimation from remotely sensed imagery using an artificial neural network (PERSIANN) and cloud classification system (CCS) method (PERSIANN-CCS) enriched by wavelet features. The feature selection technique includes a feature similarity selection method and a filter-based feature selection using genetic algorithm (FFSGA). It is employed in this study to find an optimal set of features where redundant and irrelevant features are removed. The entropy index fitness function is used to evaluate the feature subsets. The results show that using the feature selection technique not only improves the equitable threat score by almost 7% at some threshold values for the winter season, but also it extremely decreases the dimensionality. The bias also decreases in both the winter (January and February) and summer (June, July, and August) seasons.

Original languageEnglish
Article number6172550
Pages (from-to)963-967
Number of pages5
JournalIEEE Geoscience and Remote Sensing Letters
Volume9
Issue number5
DOIs
StatePublished - 2012

Funding

Manuscript received August 25, 2011; revised December 3, 2011; accepted January 2, 2012. Date of publication March 21, 2012; date of current version May 29, 2012. This work was supported by the National Aeronautics and Space Administration under Grant NNS06AA98B and the National Oceanic and Atmospheric Administration under Grant NA07OAR4170517.

FundersFunder number
National Aeronautics and Space AdministrationNNS06AA98B
National Oceanic and Atmospheric AdministrationNA07OAR4170517

    Keywords

    • Clustering
    • feature extraction
    • satellite precipitation estimation (SPE)
    • self-organizing map
    • unsupervised feature selection

    Fingerprint

    Dive into the research topics of 'On the use of the genetic algorithm filter-based feature selection technique for satellite precipitation estimation'. Together they form a unique fingerprint.

    Cite this