TY - JOUR
T1 - On the Traffic Offloading in Wi-Fi Supported Heterogeneous Wireless Networks
AU - Ekti, Ali Rıza
AU - Shakir, Muhammad Zeeshan
AU - Serpedin, Erchin
AU - Qaraqe, Khalid A.
AU - Imran, Muhammad A.
N1 - Publisher Copyright:
© 2015, Springer Science+Business Media New York.
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Heterogeneous small cell networks (HetSNet) comprise several low power, low cost (SBSa), (D2D) enabled links wireless-fidelity (Wi-Fi) access points (APs) to support the existing macrocell infrastructure, decrease over the air signaling and energy consumption, and increase network capacity, data rate and coverage. This paper presents an active user dependent path loss (PL) based traffic offloading (TO) strategy for HetSNets and a comparative study on two techniques to offload the traffic from macrocell to (SBSs) for indoor environments: PL and signal-to-interference ratio (SIR) based strategies. To quantify the improvements, the PL based strategy against the SIR based strategy is compared while considering various macrocell and (SBS) coverage areas and traffic–types. On the other hand, offloading in a dense urban setting may result in overcrowding the (SBSs). Therefore, hybrid traffic–type driven offloading technologies such as (WiFi) and (D2D) were proposed to en route the delay tolerant applications through (WiFi) (APs) and (D2D) links. It is necessary to illustrate the impact of daily user traffic profile, (SBSs) access schemes and traffic–type while deciding how much of the traffic should be offloaded to (SBSs). In this context, (AUPF) is introduced to account for the population of active small cells which depends on the variable traffic load due to the active users.
AB - Heterogeneous small cell networks (HetSNet) comprise several low power, low cost (SBSa), (D2D) enabled links wireless-fidelity (Wi-Fi) access points (APs) to support the existing macrocell infrastructure, decrease over the air signaling and energy consumption, and increase network capacity, data rate and coverage. This paper presents an active user dependent path loss (PL) based traffic offloading (TO) strategy for HetSNets and a comparative study on two techniques to offload the traffic from macrocell to (SBSs) for indoor environments: PL and signal-to-interference ratio (SIR) based strategies. To quantify the improvements, the PL based strategy against the SIR based strategy is compared while considering various macrocell and (SBS) coverage areas and traffic–types. On the other hand, offloading in a dense urban setting may result in overcrowding the (SBSs). Therefore, hybrid traffic–type driven offloading technologies such as (WiFi) and (D2D) were proposed to en route the delay tolerant applications through (WiFi) (APs) and (D2D) links. It is necessary to illustrate the impact of daily user traffic profile, (SBSs) access schemes and traffic–type while deciding how much of the traffic should be offloaded to (SBSs). In this context, (AUPF) is introduced to account for the population of active small cells which depends on the variable traffic load due to the active users.
KW - Active user population factor
KW - Heterogeneous networks
KW - Small cells
KW - Traffic offloading
KW - WiGig
KW - Wi–Fi
KW - Wi–Fi Direct
KW - and Path loss
UR - http://www.scopus.com/inward/record.url?scp=84959873810&partnerID=8YFLogxK
U2 - 10.1007/s11265-015-1064-7
DO - 10.1007/s11265-015-1064-7
M3 - Article
AN - SCOPUS:84959873810
SN - 1939-8018
VL - 83
SP - 225
EP - 240
JO - Journal of Signal Processing Systems
JF - Journal of Signal Processing Systems
IS - 2
ER -