On the stability and performance of discrete event methods for simulating continuous systems

James Nutaro, Bernard Zeigler

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

This paper establishes a link between the stability of a first order, explicit discrete event integration scheme and the stability criteria for the explicit Euler method. The paper begins by constructing a time-varying linear system with bounded inputs that is equivalent to the first order discrete event integration scheme. The stability of the discrete event system is shown to result from the fact that it automatically adjusts its time advance to lie below the limit set by the explicit Euler stability criteria. Moreover, because it is not necessary to update all integrators at this rate, a significant performance advantage is possible. Our results confirm and explain previously reported studies where it is demonstrated that a reduced number of updates can provide a significant performance advantage compared to fixed step methods. These results also throw some light on stability requirements for discrete event simulation of spatially extended systems.

Original languageEnglish
Pages (from-to)797-819
Number of pages23
JournalJournal of Computational Physics
Volume227
Issue number1
DOIs
StatePublished - Nov 10 2007

Funding

Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the US Department of Energy under Contract No. DE-AC05-00OR22725. The submitted manuscript has been authored by a contractor of the US Government under Contract DE-AC05-00OR22725. Accordingly, the US Government retains a nonexclusive, royalty- free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

FundersFunder number
U.S. Department of EnergyDE-AC05-00OR22725
Oak Ridge National Laboratory
UT-Battelle

    Keywords

    • DEVS
    • Differential automata
    • Discrete event simulation
    • Stability

    Fingerprint

    Dive into the research topics of 'On the stability and performance of discrete event methods for simulating continuous systems'. Together they form a unique fingerprint.

    Cite this