Abstract
Soil water status is one of the most important environmental factors that control microbial activity and rate of soil organic matter (SOM) decomposition. Its effect can be partitioned into effect of water energy status (water potential) on cellular activity, effect of water volume on cellular motility, and aqueous diffusion of substrate and nutrients, as well as the effect of air content and gas-diffusion pathways on concentration of dissolved oxygen. However, moisture functions widely used in SOM decomposition models are often based on empirical functions rather than robust physical foundations that account for these disparate impacts of soil water. The contributions of soil water content and water potential vary from soil to soil according to the soil water characteristic (SWC), which in turn is strongly dependent on soil texture and structure. The overall goal of this study is to introduce a physically based modeling framework of aerobic microbial respiration that incorporates the role of SWC under arbitrary soil moisture status. The model was tested by comparing it with published datasets of SOM decomposition under laboratory conditions.
Original language | English |
---|---|
Pages (from-to) | 1187-1209 |
Number of pages | 23 |
Journal | Biogeosciences |
Volume | 16 |
Issue number | 6 |
DOIs | |
State | Published - Mar 21 2019 |
Funding
Acknowledgements. Two rounds of constructive criticisms and recommendations by Ali Ebrahimi, Fernando Moyano, and three anonymous reviewers have significantly improved the final quality of this paper. Partial funding by the US National Science Foundation, Division of Earth Sciences, Geomorphology, and Land Use Dynamics program (EAR-1324919) is gratefully acknowledged. Benjamin Sulman was supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research.
Funders | Funder number |
---|---|
Office of Biological and Environmental Research | |
US Department of Energy | |
National Science Foundation | |
Directorate for Geosciences | 1324919 |
Division of Earth Sciences | EAR-1324919 |
Office of Science |