On the interaction between a vacancy and self-interstitial atom clusters in metals

M. A. Puigví, N. De Diego, A. Serra, Yu N. Osetsky, D. J. Bacon

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Atomic-scale computer simulation is used to study the interaction between a vacancy and a cluster of self-interstitial atoms in metals with hcp, fcc and bcc crystal structure: -zirconium, copper and -iron. Effects of cluster size, atomic structure, dislocation nature of the cluster side and temperature are investigated. A vacancy can recombine with any interstitial in small clusters and this does not affect cluster mobility. With increasing sizes clusters develop dislocation character and their interaction with vacancies depends on whether the cluster sides dissociate into partial dislocations. A vacancy recombines only on undissociated sides and corners created with undissociated segments. Vacancies inside the cluster perimeter do not recombine but restrict cluster mobility. Temperature enhances recombination by either increasing the number of recombination sites or assisting vacancy diffusion towards such sites. The results are discussed with relevance to differences in irradiation microstructure evolution of bcc, fcc and hcp metals and higher level theoretical modelling techniques.

Original languageEnglish
Pages (from-to)3501-3517
Number of pages17
JournalPhilosophical Magazine
Volume87
Issue number23
DOIs
StatePublished - Aug 2007

Funding

The research was supported by Spanish MCYT FIS2006-12436-C02-02 and the integrated project FI6O-CT-2003-508840 (‘PERFECT’) from the European Commission; and partly by the Division of Materials Sciences and Engineering and the Office of Fusion Energy Sciences, US Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Part of the computing was carried out in CESCA (http://www.cesca.es).

FundersFunder number
MCYTFIS2006-12436-C02-02, FI6O-CT-2003-508840
US Department of EnergyDE-AC05-00OR22725
Fusion Energy Sciences
Division of Materials Sciences and Engineering
European Commission

    Fingerprint

    Dive into the research topics of 'On the interaction between a vacancy and self-interstitial atom clusters in metals'. Together they form a unique fingerprint.

    Cite this