On impact testing of subsize Charpy V-notch type specimens

Mikhail A. Sokolov, Randy K. Nanstad

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

The potential for using subsize specimens to determine the actual properties of reactor pressure vessel steels is receiving increasing attention for improved vessel condition monitoring that could be beneficial for light-water reactor plant-life extension. This potential is made conditional upon, on the one hand, by the possibility of cutting samples of small volume from the internal surface of the pressure vessel for determination of actual properties of the operating pressure vessel. On the other hand, the plant-life extension will require supplemental surveillance data that cannot be provided by the existing surveillance programs. Testing of subsize specimens manufactured from broken halves of previously tested surveillance Charpy V-notch (CVN) specimens offers an attractive means of extending existing surveillance programs. Using subsize CVN type specimens requires the establishment of a specimen geometry that is adequate to obtain a ductile-to-brittle transition curve similar to that obtained from full-size specimens. This requires the development of a correlation of transition temperature and upper-shelf toughness between subsize and full-size specimens. The present study was conducted under the Heavy-Section Steel Irradiation Program. Different published approaches to the use of subsize specimens were analyzed and five different geometries of subsize specimens were selected for testing and evaluation. The specimens were made from several types of pressure vessel steels with a wide range of yield strengths, transition temperatures, and upper-shelf energies (USEs). The effects of specimen dimensions, including depth, angle, and radius of notch have been studied. The correlation of transition temperature determined from different types of subsize specimens and the full-size specimen is presented. A new procedure for transforming data from subsize specimens was developed and is presented. The transformed data are in good agreement with data from full-size specimens for materials that have USE levels < 200 J.

Original languageEnglish
Pages (from-to)384-414
Number of pages31
JournalASTM Special Technical Publication
Volume1270
DOIs
StatePublished - 1996

Fingerprint

Dive into the research topics of 'On impact testing of subsize Charpy V-notch type specimens'. Together they form a unique fingerprint.

Cite this