Observation of Double Weyl Phonons in Parity-Breaking FeSi

H. Miao, T. T. Zhang, L. Wang, D. Meyers, A. H. Said, Y. L. Wang, Y. G. Shi, H. M. Weng, Z. Fang, M. P.M. Dean

Research output: Contribution to journalArticlepeer-review

157 Scopus citations

Abstract

Condensed matter systems have now become a fertile ground to discover emerging topological quasiparticles with symmetry protected modes. While many studies have focused on fermionic excitations, the same conceptual framework can also be applied to bosons yielding new types of topological states. Motivated by Zhang et al.'s recent theoretical prediction of double Weyl phonons in transition metal monosilicides [Phys. Rev. Lett. 120, 016401 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.016401], we directly measure the phonon dispersion in parity-breaking FeSi using inelastic x-ray scattering. By comparing the experimental data with theoretical calculations, we make the first observation of double Weyl points in FeSi, which will be an ideal material to explore emerging bosonic excitations and its topologically nontrivial properties.

Original languageEnglish
Article number035302
JournalPhysical Review Letters
Volume121
Issue number3
DOIs
StatePublished - Jul 18 2018
Externally publishedYes

Funding

H. M. and M. P. M. D. acknowledge A. Alexandradinata, C. Fang, L. Lu, and D. Mazzone for insightful discussions. This material is based upon work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Early Career Award Program under Award No. 1047478. Work at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-SC0012704. The IXS experiments were performed at 30ID in the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We acknowledge the support from the National Key Research and Development Program of China (Grant No. 2016YFA0300600), the National Natural Science Foundation of China (Grants No. 11674369 and No. 11774399), and the Chinese Academy of Sciences (XDB07020100 and QYZDB-SSW-SLH043). H.M. and M.P.M.D. acknowledge A. Alexandradinata, C. Fang, L. Lu, and D. Mazzone for insightful discussions. This material is based upon work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Early Career Award Program under Award No. 1047478. Work at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-SC0012704. The IXS experiments were performed at 30ID in the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We acknowledge the support from the National Key Research and Development Program of China (Grant No. 2016YFA0300600), the National Natural Science Foundation of China (Grants No. 11674369 and No. 11774399), and the Chinese Academy of Sciences (XDB07020100 and QYZDB-SSW-SLH043).

Fingerprint

Dive into the research topics of 'Observation of Double Weyl Phonons in Parity-Breaking FeSi'. Together they form a unique fingerprint.

Cite this