TY - GEN
T1 - Numerical simulation of acoustic streaming in gas-liquid two-phase flow
AU - Lu, Bo
AU - Ruggles, Arthur E.
PY - 2005
Y1 - 2005
N2 - Acoustic streaming phenomena pertaining to liquid-gas two-phase flow in a one-dimensional rigid duct is investigated numerically. The oscillatory bubbly flow is generated due to the sinusoidal vibration of the vertical left wall of the enclosure. Time-averaged streaming flow patterns exist in the duct as a consequence of interaction between gas bubbles and liquid which are similar to the Rayleigh-type acoustic streaming phenomena extensively investigated in single-phase flow. The liquid is treated as incompressible with a homogeneous distribution of non-condensable gas bubbles. The system is modeled with coupled nonlinear and flux-conservative partial differential equations combined with the Rayleigh-Plesset equation governing the bubble radius. The viscous interaction between bubbles and the surrounding incompressible liquid phase is the main mechanism for attenuation of the wave energy considered in this analysis. The numerical solutions are obtained by a control-volume based finite-volume Lagrangian method.
AB - Acoustic streaming phenomena pertaining to liquid-gas two-phase flow in a one-dimensional rigid duct is investigated numerically. The oscillatory bubbly flow is generated due to the sinusoidal vibration of the vertical left wall of the enclosure. Time-averaged streaming flow patterns exist in the duct as a consequence of interaction between gas bubbles and liquid which are similar to the Rayleigh-type acoustic streaming phenomena extensively investigated in single-phase flow. The liquid is treated as incompressible with a homogeneous distribution of non-condensable gas bubbles. The system is modeled with coupled nonlinear and flux-conservative partial differential equations combined with the Rayleigh-Plesset equation governing the bubble radius. The viscous interaction between bubbles and the surrounding incompressible liquid phase is the main mechanism for attenuation of the wave energy considered in this analysis. The numerical solutions are obtained by a control-volume based finite-volume Lagrangian method.
UR - http://www.scopus.com/inward/record.url?scp=33646567172&partnerID=8YFLogxK
U2 - 10.1115/FEDSM2005-77305
DO - 10.1115/FEDSM2005-77305
M3 - Conference contribution
AN - SCOPUS:33646567172
SN - 0791837602
SN - 9780791837603
T3 - Proceedings of 2005 ASME Fluids Engineering Division Summer Meeting, FEDSM2005
SP - 849
EP - 854
BT - Proceedings of 2005 ASME Fluids Engineering Division Summer Meeting, FEDSM2005
T2 - 2005 ASME Fluids Engineering Division Summer Meeting, FEDSM2005
Y2 - 19 June 2005 through 23 June 2005
ER -