TY - JOUR
T1 - NRPreTo
T2 - A Machine Learning-Based Nuclear Receptor and Subfamily Prediction Tool
AU - Madugula, Sita Sirisha
AU - Pandey, Suman
AU - Amalapurapu, Shreya
AU - Bozdag, Serdar
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society.
PY - 2023/6/13
Y1 - 2023/6/13
N2 - The nuclear receptor (NR) superfamily includes phylogenetically related ligand-activated proteins, which play a key role in various cellular activities. NR proteins are subdivided into seven subfamilies based on their function, mechanism, and nature of the interacting ligand. Developing robust tools to identify NR could give insights into their functional relationships and involvement in disease pathways. Existing NR prediction tools only use a few types of sequence-based features and are tested on relatively similar independent datasets; thus, they may suffer from overfitting when extended to new genera of sequences. To address this problem, we developed Nuclear Receptor Prediction Tool (NRPreTo), a two-level NR prediction tool with a unique training approach where in addition to the sequence-based features used by existing NR prediction tools, six additional feature groups depicting various physiochemical, structural, and evolutionary features of proteins were utilized. The first level of NRPreTo allows for the successful prediction of a query protein as NR or non-NR and further subclassifies the protein into one of the seven NR subfamilies in the second level. We developed Random Forest classifiers to test on benchmark datasets, as well as the entire human protein datasets from RefSeq and Human Protein Reference Database (HPRD). We observed that using additional feature groups improved the performance. We also observed that NRPreTo achieved high performance on the external datasets and predicted 59 novel NRs in the human proteome. The source code of NRPreTo is publicly available at https://github.com/bozdaglab/NRPreTo.
AB - The nuclear receptor (NR) superfamily includes phylogenetically related ligand-activated proteins, which play a key role in various cellular activities. NR proteins are subdivided into seven subfamilies based on their function, mechanism, and nature of the interacting ligand. Developing robust tools to identify NR could give insights into their functional relationships and involvement in disease pathways. Existing NR prediction tools only use a few types of sequence-based features and are tested on relatively similar independent datasets; thus, they may suffer from overfitting when extended to new genera of sequences. To address this problem, we developed Nuclear Receptor Prediction Tool (NRPreTo), a two-level NR prediction tool with a unique training approach where in addition to the sequence-based features used by existing NR prediction tools, six additional feature groups depicting various physiochemical, structural, and evolutionary features of proteins were utilized. The first level of NRPreTo allows for the successful prediction of a query protein as NR or non-NR and further subclassifies the protein into one of the seven NR subfamilies in the second level. We developed Random Forest classifiers to test on benchmark datasets, as well as the entire human protein datasets from RefSeq and Human Protein Reference Database (HPRD). We observed that using additional feature groups improved the performance. We also observed that NRPreTo achieved high performance on the external datasets and predicted 59 novel NRs in the human proteome. The source code of NRPreTo is publicly available at https://github.com/bozdaglab/NRPreTo.
UR - http://www.scopus.com/inward/record.url?scp=85163347902&partnerID=8YFLogxK
U2 - 10.1021/acsomega.3c00286
DO - 10.1021/acsomega.3c00286
M3 - Article
AN - SCOPUS:85163347902
SN - 2470-1343
VL - 8
SP - 20379
EP - 20388
JO - ACS Omega
JF - ACS Omega
IS - 23
ER -