Abstract
Biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) was chemically conjugated to oligonucleotide (ODN) to form an amphiphatic structure which is similar to an A-B type block copolymer. A terminal end of PLGA was activated and reacted with primary amine-terminated ODN. The ODN/PLGA conjugates self-assembled in aqueous solution to form a micellar structure by serving PLGA segments as a hydrophobic core and ODN segments as a surrounding hydrophilic corona. Critical micelle concentration was determined by a spectrofiurometric method. Atomic force microscopic observation revealed that the micelle size was around 80 nm. These micelles could release ODN in a sustained manner by controlled degradation of hydrophobic PLGA chains. Compared to unconjugated ODN, the ODN/PLGA micelles could be more efficiently transported within cells, presumably by endocytosis. This study proposes a potential delivery method of ODN into cells by forming hybrid ODN/PLGA micelles.
Original language | English |
---|---|
Pages (from-to) | 917-923 |
Number of pages | 7 |
Journal | Bioconjugate Chemistry |
Volume | 12 |
Issue number | 6 |
DOIs | |
State | Published - 2001 |
Externally published | Yes |