Novel composite hydrogels containing fractionated, purified lignins for aqueous-based separations

Nicholas Gregorich, Junhuan Ding, Mark C. Thies, Eric M. Davis

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Herein, a series of novel, lignin-based hydrogel composites was fabricated by incorporating ultraclean lignins (UCLs), of controlled molecular weight and low dispersity, into poly(vinyl alcohol) (PVA). The UCLs were obtained from a novel liquid-liquid fractionation of high dispersity crude bulk lignins (CBLs) obtained from Kraft black liquor. A complementary series of composite hydrogels was fabricated using these CBLs. Both the CBLs and UCLs were functionalized with vinyl-containing acrylate groups allowing the lignins to chemically crosslink with themselves, forming an interpenetrated network with the thermally-crosslinked network of PVA chains. Successful functionalization of the UCLs was demonstrated by proton and phosphorous nuclear magnetic resonance. PVA-lignin hydrogels containing 20 wt% UCL saw a reduction in methylene blue (MB) permeability by approximately two orders of magnitude when compared to neat PVA. Further, for composite hydrogels containing either 50 wt% UCL or CBL, no MB was detected in the receiving reservoir over the duration of the permeation experiment. In general, an increase in Young's moduli was observed in PVA-lignin hydrogels containing CBLs, where hydrogels composed of 50 wt% CBLs exhibited ∼40% increase when compared to neat PVA. In contrast, a ∼10% reduction in Young's moduli was observed for composite hydrogels containing 20 wt% UCLs or less, though these membranes exhibited the lowest MB permeabilities of all membranes investigated. However, the largest increase in membrane stiffness was observed for composite hydrogels containing 50 wt% UCLs, where a ∼70% increase in Young's modulus was observed. Finally, the concentration and functionalization of the lignins was seen to have a direct impact on the network structure of the soft composites, where in general, the molecular weight between crosslinks is seen to decrease with increasing lignin concentration.

Original languageEnglish
Pages (from-to)1025-1038
Number of pages14
JournalJournal of Materials Chemistry A
Volume9
Issue number2
DOIs
StatePublished - Jan 14 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Novel composite hydrogels containing fractionated, purified lignins for aqueous-based separations'. Together they form a unique fingerprint.

Cite this