TY - JOUR
T1 - Nordic socio-recreational ecosystem services in a hydropeaked river
AU - Virk, Zeeshan Tahir
AU - Ashraf, Faisal Bin
AU - Haghighi, Ali Torabi
AU - Kløve, Bjørn
AU - Hellsten, Seppo
AU - Marttila, Hannu
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2024/2/20
Y1 - 2024/2/20
N2 - Fluctuating energy prices call for short-term river flow regulation at hydropower plants (HPPs), which can lead to hydropeaking – the pulsating water flow downstream from a HPP. Hydropeaking can affect land use areas of regulated rivers and subsequently their socio–recreational ecosystem services (SRESs). These areas often offer a range of services, such as swimming, boating, fishing, hiking, cycling, and berry picking. Such activities hold significant value in Nordic culture and for human wellbeing. We have examined how SRES land use areas are affected by hourly hydropeaking in a reach of the Kemijoki River in Finland. First, we determined the state of hydropeaking in the river by employing two indicators, normalized daily maximum flow difference and sub-daily flow ramping. Next, we looked at the spatiotemporal impacts of peaking hydrology using inundation maps derived from 2D-hydrodynamic modeling and a high-resolution land use map with clearly identified SRES areas. Finally, we examined the hazards to hydraulic safety in the river channel in the context of instream recreation. Our results show that hydropeaking levels in the study area remained consistently high throughout the entire study period, from 2010 to 2021. This was the case in all seasons except for the spring of 2013, 2016 and 2019. We determined that hydropeaking impacts on SRESs are mostly felt in the littoral zone (0.84 km2 i.e., 3.1 % of the study area) during the summer season as 25 % (0.21 km2) of this zone is influenced by hydropeaking. In addition, multiple recreational use areas in this zone, such as beaches, riparian forest, and summer cottages, were found to be affected by hydropeaking. The results show that most of the river channel becomes hydraulically unsafe during high ramping flows. The highest hazard to instream recreation opportunities is likely to occur during summer. Consequently, hydropeaking can threaten the social and recreational services of Nordic rivers.
AB - Fluctuating energy prices call for short-term river flow regulation at hydropower plants (HPPs), which can lead to hydropeaking – the pulsating water flow downstream from a HPP. Hydropeaking can affect land use areas of regulated rivers and subsequently their socio–recreational ecosystem services (SRESs). These areas often offer a range of services, such as swimming, boating, fishing, hiking, cycling, and berry picking. Such activities hold significant value in Nordic culture and for human wellbeing. We have examined how SRES land use areas are affected by hourly hydropeaking in a reach of the Kemijoki River in Finland. First, we determined the state of hydropeaking in the river by employing two indicators, normalized daily maximum flow difference and sub-daily flow ramping. Next, we looked at the spatiotemporal impacts of peaking hydrology using inundation maps derived from 2D-hydrodynamic modeling and a high-resolution land use map with clearly identified SRES areas. Finally, we examined the hazards to hydraulic safety in the river channel in the context of instream recreation. Our results show that hydropeaking levels in the study area remained consistently high throughout the entire study period, from 2010 to 2021. This was the case in all seasons except for the spring of 2013, 2016 and 2019. We determined that hydropeaking impacts on SRESs are mostly felt in the littoral zone (0.84 km2 i.e., 3.1 % of the study area) during the summer season as 25 % (0.21 km2) of this zone is influenced by hydropeaking. In addition, multiple recreational use areas in this zone, such as beaches, riparian forest, and summer cottages, were found to be affected by hydropeaking. The results show that most of the river channel becomes hydraulically unsafe during high ramping flows. The highest hazard to instream recreation opportunities is likely to occur during summer. Consequently, hydropeaking can threaten the social and recreational services of Nordic rivers.
KW - Ecosystem services
KW - Hydraulic safety
KW - Hydropower
KW - Load balancing
KW - Machine learning
KW - Recreation
KW - Short-term regulation
KW - Social
KW - Sub-Arctic rivers
KW - Supervised land use classification
UR - http://www.scopus.com/inward/record.url?scp=85180571380&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2023.169385
DO - 10.1016/j.scitotenv.2023.169385
M3 - Article
C2 - 38104819
AN - SCOPUS:85180571380
SN - 0048-9697
VL - 912
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 169385
ER -