Abstract
Non-orthogonal configuration interaction with fragment calculations are presented for a number of compounds that show singlet fission properties: (i) four perylene-diimide derivatives, (ii) crystalline pentacene and its (B,N)-substituted variant, and (iii) a regular and a distorted stack of three indolonaphthyridine molecules. The electronic couplings between the singlet excitonic states (S1) and the singlet-coupled double triplet (T1T1), the so-called singlet fission coupling, were computed from ensembles with two and three molecules, and except for some small deviations when charge transfer states were included, results are virtually the same. Ensembles of three molecules were used to study the mechanisms of triplet separation, double triplet diffusion, and singlet and triplet exciton diffusion. The calculations show that apart from the standard mechanism for the generation of two uncoupled triplet states (S1 → T1T1 → T1...T1), there are two other possible pathways: the direct generation from the singlet excitonic state (S1 → T1...T1) and the process in which the excitonic state evolves in a superposition of T1T1 and T1...T1 states. The electronic coupling for triplet diffusion is in general much smaller than for singlet diffusion.
| Original language | English |
|---|---|
| Pages (from-to) | 4290-4302 |
| Number of pages | 13 |
| Journal | Journal of Physical Chemistry C |
| Volume | 129 |
| Issue number | 8 |
| DOIs | |
| State | Published - Feb 27 2025 |
Funding
Financial support was provided by the ministry of science and innovation of the Spanish administration through the projects PID2021-126076NB-I00, PID2020-113187GB-I00, and Maria de Maetzu CEX2021-001202-M and by the Generalitat de Catalunya through the projects 2021SGR00079 and 2021SGR00110. This work used resources of the Oak Ridge Leadership Computing Facility (OLCF) at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy (DOE) under Contract DE-AC05-00OR22725 through the INCITE Project CHM154 and SummitPLUS Project CHM198. Part of the calculations were performed on Leonardo@CINECA (Italy) within the EuroHPC-JU programme.