TY - GEN
T1 - Noncontact and noninvasive strain monitoring of osseointegrated prostheses
AU - Gupta, Sumit
AU - Loh, Kenneth J.
PY - 2017
Y1 - 2017
N2 - The objective of this study was to develop a noncontact and noninvasive technique for monitoring the strain-states of osseointegrated prostheses. Knowing the stress-or strain-state is important, especially for ensuring patients comply with rehabilitation exercises post-surgery or for detecting prosthesis failure. The proposed method utilizes electrical capacitance tomography (ECT) coupled with a strain-sensitive thin film deposited onto osseointegrated prostheses. Here, ECT employs a set of noncontact electrodes, which can be used to excite a sensing region using a time-varying electric field, while capacitance measurements are simultaneously obtained. An inverse tomography problem can be solved, using capacitance as inputs, to reconstruct the permittivity distribution of the interrogated region. Since the permittivity of metals alone (i.e., prosthesis) is insensitive to stress and strain, a carbon nanotube-based thin film, which can be deposited onto the prosthesis surface prior to implant, was designed such that its permittivity is sensitive to applied strains. In this work, the ECT algorithm was first implemented and validated. Second, the thin film was deposited onto prosthesis surrogates, and the film-coated prosthesis was subjected to uniaxial tensile tests. ECT was performed at different strain-states to map, without making contact, the change in permittivity of the film-coated prosthesis. The results showed that ECT could identify the rod and detect changes in permittivity in response to applied strains. In general, the proposed tomographic technique coupled with strain-sensitive thin films can serve as a new noninvasive imaging and noncontact strain sensing modality.
AB - The objective of this study was to develop a noncontact and noninvasive technique for monitoring the strain-states of osseointegrated prostheses. Knowing the stress-or strain-state is important, especially for ensuring patients comply with rehabilitation exercises post-surgery or for detecting prosthesis failure. The proposed method utilizes electrical capacitance tomography (ECT) coupled with a strain-sensitive thin film deposited onto osseointegrated prostheses. Here, ECT employs a set of noncontact electrodes, which can be used to excite a sensing region using a time-varying electric field, while capacitance measurements are simultaneously obtained. An inverse tomography problem can be solved, using capacitance as inputs, to reconstruct the permittivity distribution of the interrogated region. Since the permittivity of metals alone (i.e., prosthesis) is insensitive to stress and strain, a carbon nanotube-based thin film, which can be deposited onto the prosthesis surface prior to implant, was designed such that its permittivity is sensitive to applied strains. In this work, the ECT algorithm was first implemented and validated. Second, the thin film was deposited onto prosthesis surrogates, and the film-coated prosthesis was subjected to uniaxial tensile tests. ECT was performed at different strain-states to map, without making contact, the change in permittivity of the film-coated prosthesis. The results showed that ECT could identify the rod and detect changes in permittivity in response to applied strains. In general, the proposed tomographic technique coupled with strain-sensitive thin films can serve as a new noninvasive imaging and noncontact strain sensing modality.
UR - http://www.scopus.com/inward/record.url?scp=85032363933&partnerID=8YFLogxK
U2 - 10.12783/shm2017/14142
DO - 10.12783/shm2017/14142
M3 - Conference contribution
AN - SCOPUS:85032363933
T3 - Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance - Proceedings of the 11th International Workshop on Structural Health Monitoring, IWSHM 2017
SP - 2450
EP - 2457
BT - Structural Health Monitoring 2017
A2 - Chang, Fu-Kuo
A2 - Kopsaftopoulos, Fotis
PB - DEStech Publications
T2 - 11th International Workshop on Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance, IWSHM 2017
Y2 - 12 September 2017 through 14 September 2017
ER -