Non-monotonic temperature dependence of nanoscopic dynamics measured in living housefly larvae

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

We have studied nanoscopic dynamics on pico-to nano-second time scale in living housefly (Musca domestica) larvae using quasielastic neutron scattering. Model-independent data exhibit two distinct dynamic components measurable on the time scale probed in the experiment. The broad component is reminiscent of water dynamics, but somewhat slower, and must be associated with the scattering contribution from the hemolymph in larvae. The narrow (slow) component is similar in appearance to the dynamics measured previously in the living planarian flatworms. Unlike the monotonic temperature dependence for the hemolymph dynamics, the temperature dependence for the slow dynamic component shows an increase at 298 K, in the middle of the measured (on cooling down) range of 303.8 to 289.3 K. A similar increase at 298 K, in the middle of the measured (on warming up, and with different sample environment temperature control equipment used) range of 284.5–304.1 K, has been previously observed for the slow dynamic component in living planarian flatworms. An increase in the measurable nanoscopic dynamics at a mid-range temperature of 298 K, decoupled from the hemolymph dynamics, is an unexpected phenomenon, apparently observable among organisms from different phyla, such as flatworms and arthropods.

Original languageEnglish
Pages (from-to)23-29
Number of pages7
JournalPhysica B: Physics of Condensed Matter
Volume566
DOIs
StatePublished - Aug 1 2019

Funding

The neutron scattering experiments at Oak Ridge National Laboratory's (ORNL) Spallation Neutron Source were supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) . ORNL is managed by UTBattelle , LLC , for the U.S. DOE under Contract No. DE-AC05-00OR22725 . We are thankful to J. F. Wenzel for designing and building Peltier element-based sample environment equipment used in the experiments. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).The neutron scattering experiments at Oak Ridge National Laboratory's (ORNL) Spallation Neutron Source were supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). ORNL is managed by UTBattelle, LLC, for the U.S. DOE under Contract No. DE-AC05-00OR22725. We are thankful to J. F. Wenzel for designing and building Peltier element-based sample environment equipment used in the experiments.☆ This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
Office of Basic Energy Sciences
Scientific User Facilities Division
U.S. Department of EnergyDE-AC05-00OR22725
Oak Ridge National Laboratory

    Keywords

    • Housefly larvae
    • Living organisms
    • Nanoscopic dynamics

    Fingerprint

    Dive into the research topics of 'Non-monotonic temperature dependence of nanoscopic dynamics measured in living housefly larvae'. Together they form a unique fingerprint.

    Cite this