Non-local contribution from small scales in galaxy–galaxy lensing: comparison of mitigation schemes

The DES Collaboration

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Recent cosmological analyses with large-scale structure and weak lensing measurements, usually referred to as 3 × 2pt, had to discard a lot of signal to noise from small scales due to our inability to accurately model non-linearities and baryonic effects. Galaxy–galaxy lensing, or the position–shear correlation between lens and source galaxies, is one of the three two-point correlation functions that are included in such analyses, usually estimated with the mean tangential shear. However, tangential shear measurements at a given angular scale θ or physical scale R carry information from all scales below that, forcing the scale cuts applied in real data to be significantly larger than the scale at which theoretical uncertainties become problematic. Recently, there have been a few independent efforts that aim to mitigate the non-locality of the galaxy–galaxy lensing signal. Here, we perform a comparison of the different methods, including the Y-transformation, the point-mass marginalization methodology, and the annular differential surface density statistic. We do the comparison at the cosmological constraints level in a combined galaxy clustering and galaxy–galaxy lensing analysis. We find that all the estimators yield equivalent cosmological results assuming a simulated Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1 like set-up and also when applied to DES Y3 data. With the LSST Y1 set-up, we find that the mitigation schemes yield ∼1.3 times more constraining S8 results than applying larger scale cuts without using any mitigation scheme.

Original languageEnglish
Pages (from-to)412-425
Number of pages14
JournalMonthly Notices of the Royal Astronomical Society
Volume522
Issue number1
DOIs
StatePublished - Jun 1 2023

Funding

Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NSF’s NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

FundersFunder number
Brazilian Instituto Nacional de Ciência e Tecnologia
Collaborating Institutions are Argonne National Laboratory
Collaborating Institutions in the Dark Energy Survey
Fermi Research Alliance, LLCDE-AC02-07CH11359
Institut de Ciències de l’Espai
Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University
Science and Technology Facilities Council of the United Kingdom
National Science FoundationAST-1138766, AST-1536171
U.S. Department of Energy
University of Illinois at Urbana-Champaign
Stanford University
Office of Science
High Energy Physics
Fermilab
Lawrence Berkeley National Laboratory
University of California, Santa Cruz
University of Pennsylvania
Ohio State University
University of Chicago
University of Michigan
Texas A and M University2012B-0001
University of Portsmouth
National Centre for Supercomputing Applications
Seventh Framework Programme
SLAC National Accelerator Laboratory
Higher Education Funding Council for England
Engineering Research Centers240672, 306478, 291329
University College London
European Commission
European Research Council
University of Nottingham
University of Sussex
University of Edinburgh
Deutsche Forschungsgemeinschaft
Generalitat de Catalunya
Eidgenössische Technische Hochschule Zürich
Ministério da Ciência, Tecnologia e Inovação
Conselho Nacional de Desenvolvimento Científico e Tecnológico465376/2014-2
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Financiadora de Estudos e Projetos
Ministerio de Ciencia e InnovaciónSEV-2016-0588, SEV-2016-0597, MDM-2015-0509, PGC2018-094773, PGC2018-102021, ESP2017-89838
Ludwig-Maximilians-Universität München
Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção
Ministry of Education and Science of Ukraine
European Regional Development Fund
Institut de Física d'Altes Energies

    Keywords

    • cosmological parameters
    • cosmology: theory
    • gravitational lensing: weak
    • large-scale structure of Universe

    Fingerprint

    Dive into the research topics of 'Non-local contribution from small scales in galaxy–galaxy lensing: comparison of mitigation schemes'. Together they form a unique fingerprint.

    Cite this