Abstract
Formation of tokamak-like plasmas via electrostatic helicity injection in the ultra-low aspect ratio Pegasus Toroidal Experiment is reported. Two low-impurity, high-current (1 kA) washer gun current sources have been installed in the lower divertor region. These initially drive current along helical field lines produced by the applied toroidal and vertical fields. At sufficiently low values of externally applied vertical field, the poloidal field generated by the plasma is large enough to cause a poloidal flux reversal. In these cases the plasma relaxes into a tokamak-like configuration. Discharges with I a≈ 30 kA are produced with less than 2 kA of injected current. These discharges exhibit features indicative of tokamak plasmas, including reversal of poloidal flux at the center column, strong vacuum field deformation, increased current decay times, increased core heating, and characteristic MHD modes common to other helicity-injection-driven toroidal devices.
Original language | English |
---|---|
Pages (from-to) | 43-46 |
Number of pages | 4 |
Journal | Journal of Fusion Energy |
Volume | 26 |
Issue number | 1-2 |
DOIs | |
State | Published - Jun 2007 |
Externally published | Yes |
Funding
The authors thank G. Fiksel and the Madison Symmetric Torus group for providing the gun current sources and extensive advice on their operation. We also thank M. Ono and M. Peng of PPPL for their useful discussions and continual encouragement. This work supported by US DOE Grant DE-FG02-96ER54375. The research was performed under appointment to the Fusion Energy Sciences Fellowship Program administered by Oak Ridge Institute for Science and Education under a contract between the U.S. Department of Energy and the Oak Ridge associated Universities.
Funders | Funder number |
---|---|
U.S. Department of Energy | DE-FG02-96ER54375 |
Fusion Energy Sciences | |
Oak Ridge Institute for Science and Education |
Keywords
- DC helicity injection
- Non-inductive startup
- Washer guns