TY - JOUR
T1 - Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance
AU - Wang, Xiqing
AU - Liu, Chen Guang
AU - Neff, David
AU - Fulvio, Pasquale F.
AU - Mayes, Richard T.
AU - Zhamu, Aruna
AU - Fang, Qing
AU - Chen, Guorong
AU - Meyer, Harry M.
AU - Jang, Bor Z.
AU - Dai, Sheng
PY - 2013
Y1 - 2013
N2 - Self-assembly of phenolic resins and a Pluronic block copolymer via the soft-template method enables the formation of well-organized polymeric mesostructures, providing an easy way for preparation of ordered mesoporous carbons (OMCs). However, direct synthesis of OMCs with high nitrogen content remains a significant challenge due to the limited availability of nitrogen precursors capable of co-polymerizing with phenolic resins without deterioration of the order of mesostructural arrangement and significant diminishment of nitrogen content during carbonization. In this work, we demonstrate pyrolysis of the soft-templated polymeric composites in ammonia as a direct, facile way towards nitrogen-enriched OMCs (N-OMCs). This approach does not require any nitrogen-containing carbon precursors or post-treatment, but takes advantage of the preferential reaction and/or replacement of oxygen with nitrogen species, generated by decomposition of ammonia at elevated temperatures, in oxygen-rich polymers during pyrolysis. It combines carbonization, nitrogen functionalization, and activation into one simple process, generating N-OMCs with a uniform pore size, large surface area (up to 1400 m2 g -1), and high nitrogen content (up to 9.3 at%). More importantly, the ordering of the meso-structure is well-maintained as long as the heating temperature does not exceed 800°C, above which (e.g., 850°C) a slight structural degradation is observed. When being used as electrode materials for symmetric electric double layer capacitors, N-OMCs demonstrate enhanced capacitance (6.8 μF cm-2vs. 3.2 μF cm-2) and reduced ion diffusion resistance compared to the non-NH3-treated sample.
AB - Self-assembly of phenolic resins and a Pluronic block copolymer via the soft-template method enables the formation of well-organized polymeric mesostructures, providing an easy way for preparation of ordered mesoporous carbons (OMCs). However, direct synthesis of OMCs with high nitrogen content remains a significant challenge due to the limited availability of nitrogen precursors capable of co-polymerizing with phenolic resins without deterioration of the order of mesostructural arrangement and significant diminishment of nitrogen content during carbonization. In this work, we demonstrate pyrolysis of the soft-templated polymeric composites in ammonia as a direct, facile way towards nitrogen-enriched OMCs (N-OMCs). This approach does not require any nitrogen-containing carbon precursors or post-treatment, but takes advantage of the preferential reaction and/or replacement of oxygen with nitrogen species, generated by decomposition of ammonia at elevated temperatures, in oxygen-rich polymers during pyrolysis. It combines carbonization, nitrogen functionalization, and activation into one simple process, generating N-OMCs with a uniform pore size, large surface area (up to 1400 m2 g -1), and high nitrogen content (up to 9.3 at%). More importantly, the ordering of the meso-structure is well-maintained as long as the heating temperature does not exceed 800°C, above which (e.g., 850°C) a slight structural degradation is observed. When being used as electrode materials for symmetric electric double layer capacitors, N-OMCs demonstrate enhanced capacitance (6.8 μF cm-2vs. 3.2 μF cm-2) and reduced ion diffusion resistance compared to the non-NH3-treated sample.
UR - http://www.scopus.com/inward/record.url?scp=84880154824&partnerID=8YFLogxK
U2 - 10.1039/c3ta11342f
DO - 10.1039/c3ta11342f
M3 - Article
AN - SCOPUS:84880154824
SN - 2050-7488
VL - 1
SP - 7920
EP - 7926
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 27
ER -