NIMBLE: A toolkit for the implementation of parallel data mining and machine learning algorithms on mapReduce

Amol Ghoting, Prabhanjan Kambadur, Edwin Pednault, Ramakrishnan Kannan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

58 Scopus citations

Abstract

In the last decade, advances in data collection and storage technologies have led to an increased interest in designing and implementing large-scale parallel algorithms for machine learning and data mining (ML-DM). Existing programming paradigms for expressing large-scale parallelism such as MapReduce (MR) and the Message Passing Interface (MPI) have been the de facto choices for implementing these ML-DM algorithms. The MR programming paradigm has been of particular interest as it gracefully handles large datasets and has built-in resilience against failures. However, the existing parallel programming paradigms are too low-level and ill-suited for implementing ML-DM algorithms. To address this deficiency, we present NIMBLE, a portable infrastructure that has been specifically designed to enable the rapid implementation of parallel ML-DM algorithms. The infrastructure allows one to compose parallel ML-DM algorithms using reusable (serial and parallel) building blocks that can be efficiently executed using MR and other parallel programming models; it currently runs on top of Hadoop, which is an open-source MR implementation. We show how NIMBLE can be used to realize scalable implementations of ML-DM algorithms and present a performance evaluation.

Original languageEnglish
Title of host publicationProceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'11
PublisherAssociation for Computing Machinery
Pages334-342
Number of pages9
ISBN (Print)9781450308137
DOIs
StatePublished - 2011
Externally publishedYes
Event17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011 - San Diego, United States
Duration: Aug 21 2011Aug 24 2011

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011
Country/TerritoryUnited States
CitySan Diego
Period08/21/1108/24/11

Keywords

  • Data mining
  • Machine learning
  • MapReduce
  • Tasks

Fingerprint

Dive into the research topics of 'NIMBLE: A toolkit for the implementation of parallel data mining and machine learning algorithms on mapReduce'. Together they form a unique fingerprint.

Cite this