TY - JOUR
T1 - New insight into pressure-induced phase transitions of amorphous silicon
T2 - the role of impurities
AU - Haberl, Bianca
AU - Guthrie, Malcolm
AU - Sprouster, David J.
AU - Williams, Jim S.
AU - Bradby, Jodie E.
PY - 2013/6
Y1 - 2013/6
N2 - The pressure-induced phase transformations of a form of amorphous silicon (a-Si) with well characterized impurity levels and structure are examined at pressures up to 40 GPa using in situ synchrotron X-ray radiation. At ∼12 GPa crystallization commences, but it is not completed until ∼16 GPa. At higher pressures, not all the crystalline phases observed for crystalline silicon (c-Si) appear. On pressure release, none of the metastable crystalline phases observed for c-Si nucleate. Instead an amorphous phase is re-formed. This is in contrast to all previous diamond-anvil studies on a-Si. If full pressure-induced crystallization occurred, the material remained crystalline on unloading. The formation of a-Si upon unloading was only observed when a high-density amorphous phase was reported on loading. The fully characterized nature of the a-Si used in this current study allows for the interpretation of this significant diversity in terms of impurity content of the a-Si used. Namely, this suggests that 'ideal' (pure, voidless, structurally relaxed) a-Si will follow the same transition pathway as observed for c-Si, while crystallization of a-Si forms with a high impurity content is retarded or even inhibited. The a-Si used here straddles both regimes and thus, although full crystallization occurs, the more complex crystalline structures fail to nucleate.
AB - The pressure-induced phase transformations of a form of amorphous silicon (a-Si) with well characterized impurity levels and structure are examined at pressures up to 40 GPa using in situ synchrotron X-ray radiation. At ∼12 GPa crystallization commences, but it is not completed until ∼16 GPa. At higher pressures, not all the crystalline phases observed for crystalline silicon (c-Si) appear. On pressure release, none of the metastable crystalline phases observed for c-Si nucleate. Instead an amorphous phase is re-formed. This is in contrast to all previous diamond-anvil studies on a-Si. If full pressure-induced crystallization occurred, the material remained crystalline on unloading. The formation of a-Si upon unloading was only observed when a high-density amorphous phase was reported on loading. The fully characterized nature of the a-Si used in this current study allows for the interpretation of this significant diversity in terms of impurity content of the a-Si used. Namely, this suggests that 'ideal' (pure, voidless, structurally relaxed) a-Si will follow the same transition pathway as observed for c-Si, while crystallization of a-Si forms with a high impurity content is retarded or even inhibited. The a-Si used here straddles both regimes and thus, although full crystallization occurs, the more complex crystalline structures fail to nucleate.
KW - amorphous silicon
KW - impurities
KW - pressure-induced phase transitions
UR - http://www.scopus.com/inward/record.url?scp=84877861647&partnerID=8YFLogxK
U2 - 10.1107/S0021889813010509
DO - 10.1107/S0021889813010509
M3 - Article
AN - SCOPUS:84877861647
SN - 0021-8898
VL - 46
SP - 758
EP - 768
JO - Journal of Applied Crystallography
JF - Journal of Applied Crystallography
IS - 3
ER -