Neutron/gamma coupled library generation and gamma transport calculation with KARMA 1.2

Ser Gi Hong, Kang Seog Kim, Jin Young Cho, Kyung Hoon Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

KAERI has developed a lattice transport calculation code KARMA and its multi-group cross section library generation system. Recently, the multi-group cross section library generation system has included a gamma cross section generation capability and KARMA also has been improved to include a gamma transport calculation module. This paper addresses the multi-group gamma cross section generation capability for the KARMA 1.2 code and the preliminary test results of the KARMA 1.2 gamma transport calculations. The gamma transport calculation with KARMA 1.2 gives the gamma flux, gamma smeared power, and gamma energy deposition distributions. The results of the KARMA gamma calculations were compared with those of HELIOS and they showed that KARMA 1.2 gives reasonable gamma transport calculation results.

Original languageEnglish
Title of host publicationInternational Conference on the Physics of Reactors 2012, PHYSOR 2012
Subtitle of host publicationAdvances in Reactor Physics
Pages4432-4439
Number of pages8
StatePublished - 2012
Externally publishedYes
EventInternational Conference on the Physics of Reactors 2012: Advances in Reactor Physics, PHYSOR 2012 - Knoxville, TN, United States
Duration: Apr 15 2012Apr 20 2012

Publication series

NameInternational Conference on the Physics of Reactors 2012, PHYSOR 2012: Advances in Reactor Physics
Volume5

Conference

ConferenceInternational Conference on the Physics of Reactors 2012: Advances in Reactor Physics, PHYSOR 2012
Country/TerritoryUnited States
CityKnoxville, TN
Period04/15/1204/20/12

Keywords

  • Gamma transport calculation
  • KARMA
  • Lattice transport calculation

Fingerprint

Dive into the research topics of 'Neutron/gamma coupled library generation and gamma transport calculation with KARMA 1.2'. Together they form a unique fingerprint.

Cite this