Neutron structure of the cyclic glucose-bound xylose isomerase E186Q mutant

Parthapratim Munshi, Edward H. Snell, Mark J. Van Der Woerd, Russell A. Judge, Dean A.A. Myles, Zhong Ren, Flora Meilleur

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Ketol-isomerases catalyze the reversible isomerization between aldoses and ketoses. d-Xylose isomerase carries out the first reaction in the catabolism of d-xylose, but is also able to convert d-glucose to d-fructose. The first step of the reaction is an enzyme-catalyzed ring opening of the cyclic substrate. The active-site amino-acid acid/base pair involved in ring opening has long been investigated and several models have been proposed. Here, the structure of the xylose isomerase E186Q mutant with cyclic glucose bound at the active site, refined against joint X-ray and neutron diffraction data, is reported. Detailed analysis of the hydrogen-bond networks at the active site of the enzyme suggests that His54, which is doubly protonated, is poised to protonate the glucose O5 position, while Lys289, which is neutral, promotes deprotonation of the glucose O1H hydroxyl group via an activated water molecule. The structure also reveals an extended hydrogen-bonding network that connects the conserved residues Lys289 and Lys183 through three structurally conserved water molecules and residue 186, which is a glutamic acid to glutamine mutation.

Original languageEnglish
Pages (from-to)414-420
Number of pages7
JournalActa Crystallographica Section D: Biological Crystallography
Volume70
Issue number2
DOIs
StatePublished - Feb 2014

Funding

FundersFunder number
National Science Foundation

    Keywords

    • E186Q mutant
    • cyclic glucose
    • neutron diffraction
    • xylose isomerase

    Fingerprint

    Dive into the research topics of 'Neutron structure of the cyclic glucose-bound xylose isomerase E186Q mutant'. Together they form a unique fingerprint.

    Cite this