Neutron scattering studies of the interplay of amyloid β peptide(1-40) and an anionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol

Durgesh K. Rai, Veerendra K. Sharma, Divina Anunciado, Hugh O'Neill, Eugene Mamontov, Volker Urban, William T. Heller, Shuo Qian

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

The interaction between lipid bilayers and Amyloid β peptide (Aβ) plays a critical role in proliferation of Alzheimer's disease (AD). AD is expected to affect one in every 85 humans by 2050, and therefore, deciphering the interplay of Aβ and lipid bilayers at the molecular level is of profound importance. In this work, we applied an array of neutron scattering methods to study the structure and dynamics of Aβ(1-40) interacting 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) bilayers. In the structural investigations of lipid bilayer's response to Aβ binding, Small Angle Neutron Scattering and Neutron Membrane Diffraction revealed that the Aβ anchors firmly to the highly charged DMPG bilayers in the interfacial region between water and hydrocarbon chain, and it doesn't penetrate deeply into the bilayer. This association mode is substantiated by the dynamics studies with high resolution Quasi-Elastic Neutron Scattering experiments, showing that the addition of Aβ mainly affects the slower lateral motion of lipid molecules, especially in the fluid phase, but not the faster internal motion. The results revealed that Aβ associates with the highly charged membrane in surface with limited impact on the structure, but the altered membrane dynamics could have more influence on other membrane processes.

Original languageEnglish
Article number30983
JournalScientific Reports
Volume6
DOIs
StatePublished - Aug 9 2016

Fingerprint

Dive into the research topics of 'Neutron scattering studies of the interplay of amyloid β peptide(1-40) and an anionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol'. Together they form a unique fingerprint.

Cite this