Abstract
Lithographic feature size requirements have approached a few radius of gyration of photoresist polymers used in thin-film patterning. Furthermore, the feature dimensions are commensurate with the photoacid diffusion length that defines the underlying latent image. Smaller imaging building blocks may enable reduced feature sizes; however, resolution limits are also dependent upon the spatial extent of the photoacid-catalyzed reaction diffusion front and subsequent dissolution mechanism. The reaction-diffusion front was characterized by neutron reflectivity for ccc stereoisomer-purified, deuterium-labeled tert-butoxycarbonyloxy calix[4]resorcinarene molecular resists. The spatial extent of the reaction front exceeds the size of the molecular resist with an effective diffusion constant of (0.13 ± 0.06) nm 2/s for reaction times longer than 60 s, with the maximum at shorter times. Comparison to a mean-field reaction-diffusion model shows that a photoacid trapping process provides bounds to the spatial and extent of reaction via a reaction-limited mechanism whereas the ratio of the reaction rate to trapping rate constants recovers the effective diffusion peak. Under the ideal step-exposure conditions, surface roughness was observed after either positive- or negative-tone development. However, negative-tone development follows a surface-restructuring mechanism rather than etch-like dissolution in positive-tone development.
Original language | English |
---|---|
Pages (from-to) | 7665-7678 |
Number of pages | 14 |
Journal | Langmuir |
Volume | 28 |
Issue number | 20 |
DOIs | |
State | Published - May 22 2012 |