TY - GEN
T1 - Neutron beam monitors for the European spallation source
AU - Khaplanov, A.
AU - Anastasopoulos, M.
AU - Bentley, P. M.
AU - Hall-Wilton, R.
AU - Kanaki, K.
AU - Kirstein, O.
AU - Nilsson, E.
AU - Piscitelli, F.
AU - Stefanescu, I.
AU - Sutton, I.
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2016/10/3
Y1 - 2016/10/3
N2 - The European Spallation Source (ESS), currently under construction in Lund, Sweden, will house a suite of 16 user instruments for neutron scattering experiments. The spallation source of the ESS will emit relatively long, 2.8 ms, neutron pulses with an integrated flux that will greatly exceed that of current facilities. This leads to both large advancements in instrument performance as well as to increased length and complexity of the beam delivery systems. The instruments will each be equipped with neutron beam monitors used for data normalisation and analysis, as well as commissioning and diagnostics. In this paper we present the requirements for beam monitors for the ESS and the strategy to meet these in a standardised approach. A large range of specifications in efficiency, dynamic range, time and position resolution, compatible materials are needed. A new feature for neutron beam monitors for some locations, is the ability to measure time profile of each source pulse individually. In general, event mode readout will be used for monitors, similarly to other neutron detectors at the facility. A selection of detectors based on different technologies will be available. Monitors will be integrated with beam lines and choppers in a way that allows to freely choose the type of monitor based on final requirements of an instrument. For this end, space for a standardised module, housing a monitor will be provided in conjunction with chopper assemblies and elsewhere on each beam line.
AB - The European Spallation Source (ESS), currently under construction in Lund, Sweden, will house a suite of 16 user instruments for neutron scattering experiments. The spallation source of the ESS will emit relatively long, 2.8 ms, neutron pulses with an integrated flux that will greatly exceed that of current facilities. This leads to both large advancements in instrument performance as well as to increased length and complexity of the beam delivery systems. The instruments will each be equipped with neutron beam monitors used for data normalisation and analysis, as well as commissioning and diagnostics. In this paper we present the requirements for beam monitors for the ESS and the strategy to meet these in a standardised approach. A large range of specifications in efficiency, dynamic range, time and position resolution, compatible materials are needed. A new feature for neutron beam monitors for some locations, is the ability to measure time profile of each source pulse individually. In general, event mode readout will be used for monitors, similarly to other neutron detectors at the facility. A selection of detectors based on different technologies will be available. Monitors will be integrated with beam lines and choppers in a way that allows to freely choose the type of monitor based on final requirements of an instrument. For this end, space for a standardised module, housing a monitor will be provided in conjunction with chopper assemblies and elsewhere on each beam line.
KW - European Spallation Source
KW - Long pulse spallation source
KW - Neutron beam monitors
UR - http://www.scopus.com/inward/record.url?scp=84994106806&partnerID=8YFLogxK
U2 - 10.1109/NSSMIC.2015.7581906
DO - 10.1109/NSSMIC.2015.7581906
M3 - Conference contribution
AN - SCOPUS:84994106806
T3 - 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015
BT - 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015
Y2 - 31 October 2015 through 7 November 2015
ER -