Neural network controller development and implementation for spark ignition engines with high EGR levels

Jonathan Blake Vance, Atmika Singh, Brian C. Kaul, Sarangapani Jagannathan, James A. Drallmeier

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Past research has shown substantial reductions in the oxides of nitrogen (NOx) concentrations by using 10%-25% exhaust gas recirculation (EGR) in spark ignition (SI) engines (see Dudek and Sain, 1989). However, under high EGR levels, the engine exhibits strong cyclic dispersion in heat release which may lead to instability and unsatisfactory performance preventing commercial engines to operate with high EGR levels. A neural network (NN)-based output feedback controller is developed to reduce cyclic variation in the heat release under high levels of EGR even when the engine dynamics are unknown by using fuel as the control input. A separate control loop was designed for controlling EGR levels. The stability analysis of the closed-loop system is given and the boundedness of the control input is demonstrated by relaxing separation principle, persistency of excitation condition, certainty equivalence principle, and linear in the unknown parameter assumptions. Online training is used for the adaptive NN and no offline training phase is needed. This online learning feature and model-free approach is used to demonstrate the applicability of the controller on a different engine with minimal effort. Simulation results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller when implemented on an engine model that has been validated experimentally. For a single cylinder research engine fitted with a modern four-valve head (Ricardo engine), experimental results at 15% EGR indicate that cyclic dispersion was reduced 33% by the controller, an improvement of fuel efficiency by 2%, and a 90% drop in NOx from stoichiometric operation without EGR was observed. Moreover, unburned hydrocarbons (uHC) drop by 6% due to NN control as compared to the uncontrolled scenario due to the drop in cyclic dispersion. Similar performance was observed with the controller on a different engine.

Original languageEnglish
Pages (from-to)1083-1100
Number of pages18
JournalIEEE Transactions on Neural Networks
Volume18
Issue number4
DOIs
StatePublished - Jul 2007
Externally publishedYes

Funding

Manuscript received December 1, 2005; revised August 29, 2006; accepted February 5, 2007. This work was supported in part by the National Science Foundation under Grants ECCS#0327877 and ECCS#0621924, by the National Science Foundation I/UCRC grant on Intelligent Maintenance Systems, and by the Department of Education through GAANN program.

FundersFunder number
Department of Education
National Science Foundation I/UCRC
National Science Foundation0327877, 0621924

    Keywords

    • Adaptive control
    • Neural networks (NNs)
    • Nonlinear systems
    • Observers
    • Output feedback

    Fingerprint

    Dive into the research topics of 'Neural network controller development and implementation for spark ignition engines with high EGR levels'. Together they form a unique fingerprint.

    Cite this