Abstract
Fluorocarbon films were grown on polystyrene in vacuum from 25- to 100-eV mass-selected C3F5+ ion beams. The films were analyzed by X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray reflectivity after exposure to the atmosphere for 4-8 weeks. The X-ray reflectivity indicates films that range from ∼30 to 60-Å thick. The thinner films form at lower ion energies, where the ion penetration depth and efficiency of film formation are lowest. X-ray reflectivity estimates air-fluorocarbon film roughness values of ∼6 Å for 25- and 50-eV films but ∼20 Å for the 100-eV films. The fluorocarbon-polystyrene-buried interface displays similar roughness and trends with ion energy. The AFM roughness trends are similar, but the absolute AFM roughnesses are only ∼1/4 of the X-ray reflectivity values. This discrepancy is attributed to tip effects and the method of determining roughness by AFM. The AFM images and power spectral densities of the 100-eV films displayed quasi-periodic cones spaced 300-700 Å apart. Such features are either absent or of much lower amplitude in the 25- and 50-eV films. Classical molecular dynamics simulations of C3P 5+ deposition on polystyrene at energies of 50 and 100 eV/ion reveal that etching at the higher energy is largely responsible for the dissimilar film structures obtained experimentally. These results demonstrate that deposition of the fluorocarbon polyatomic ion C3F 5+ allows control of film nanostructure at the surface and buried interface.
Original language | English |
---|---|
Pages (from-to) | 9656-9664 |
Number of pages | 9 |
Journal | Journal of Physical Chemistry B |
Volume | 108 |
Issue number | 28 |
DOIs | |
State | Published - Jul 15 2004 |
Externally published | Yes |