Abstract
The ability to widely tune the design of macromolecular bottlebrushes provides access to self-assembled nanostructures formed by microphase segregation in melt, thin film and solution that depart from structures adopted by simple linear copolymers. A series of random bottlebrush copolymers containing poly(3-hexylthiophene) (P3HT) and poly(d,l-lactide) (PLA) side chains grafted on a poly(norbornene) backbone were synthesized via ring-opening metathesis polymerization (ROMP) using the grafting through approach. P3HT side chains induce a physical aggregation of the bottlebrush copolymers upon solvent removal by vacuum drying, primarily driven by attractive π-π interactions; however, the amount of aggregation can be controlled by adjusting side chain composition or by adding linear P3HT chains to the bottlebrush copolymers. Coarse-grained molecular dynamics simulations reveal that linear P3HT chains preferentially associate with P3HT side chains of bottlebrush copolymers, which tends to reduce the aggregation. The nanoscale morphology of microphase segregated thin films created by casting P3HT-PLA random bottlebrush copolymers is highly dependent on the composition of P3HT and PLA side chains, while domain spacing of nanostructures is mainly determined by the length of the side chains. The selective removal of PLA side chains under alkaline conditions generates nanoporous P3HT structures that can be tuned by manipulating molecular design of the bottlebrush scaffold, which is affected by molecular weight and grafting density of the side chains, and their sequence. The ability to exploit the unusual architecture of bottlebrushes to fabricate tunable nanoporous P3HT thin film structures may be a useful way to design templates for optoelectronic applications or membranes for separations.
Original language | English |
---|---|
Pages (from-to) | 7071-7080 |
Number of pages | 10 |
Journal | Nanoscale |
Volume | 9 |
Issue number | 21 |
DOIs | |
State | Published - Jun 7 2017 |
Funding
Research conducted at the Center for Nanophase Materials Sciences is sponsored by the U.S. Department of Energy (DOE) Office of Science. The computational aspect of this research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. X-ray scattering experiments used resources of the Advanced Photon Source, a DOE Office of Science User Facility operated by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Work was performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by Northwestern University, E.I. DuPont de Nemours & Co., and the Dow Chemical Company. SMKII acknowledges support from the National Science Foundation (Award #1512221). This work was also supported by Pusan National University Research Grant, 2015. We thank Kunlun Hong and Jiahua Zhu for helpful discussions. Finally, all authors posthumously thank Michael D. Biegalski for thoughtful discussions and gracious collegiality.