TY - GEN
T1 - Nanocomposite fabric sensors for monitoring inflatable and deployable space structures
AU - Wang, Long
AU - Gupta, Sumit
AU - Loh, Kenneth J.
AU - Koo, Helen S.
N1 - Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - Inflatable deployable structures are practical and promising candidates for serving various aerospace missions, for instance, as solar sails, antennas, space suits, and especially Lunar and Mars habitats. These structures feature flexible composites folded at high packing efficiency, which can drastically reduce launch costs. However, they can also be damaged due to the harsh extraterrestrial operating conditions, which can propagate to cause catastrophic mission failure and endanger crew safety. Therefore, it is imperative to integrate a robust structural health monitoring (SHM) system, so that damage and faults can be detected for ensuring their safe and reliable operations. While a variety of SHM technologies have been developed for monitoring conventional, rigid, structural systems, they are faced with challenges when used for these unconventional flexible and inflatable systems. Therefore, a flexible carbon nanotube-fabric nanocomposite sensor is proposed in this study for monitoring the integrity of inflatable space structures. In particular, CNT-based thin films were fabricated by spraying and then integrated with flexible fabric to form the lightweight sensor. By coupling fabric sensors with an electrical impedance tomography (EIT) algorithm, the fabric's distribution of spatial resistivity can be mapped using only electrical measurements obtained along the material's boundaries. The severity and location of localized pressure and impact damage can be captured by observing changes in the EIT-calculated resistivity maps. They can be embedded in inflatable habitat structures to detect and locate abnormally high pressure regions and impact damage.
AB - Inflatable deployable structures are practical and promising candidates for serving various aerospace missions, for instance, as solar sails, antennas, space suits, and especially Lunar and Mars habitats. These structures feature flexible composites folded at high packing efficiency, which can drastically reduce launch costs. However, they can also be damaged due to the harsh extraterrestrial operating conditions, which can propagate to cause catastrophic mission failure and endanger crew safety. Therefore, it is imperative to integrate a robust structural health monitoring (SHM) system, so that damage and faults can be detected for ensuring their safe and reliable operations. While a variety of SHM technologies have been developed for monitoring conventional, rigid, structural systems, they are faced with challenges when used for these unconventional flexible and inflatable systems. Therefore, a flexible carbon nanotube-fabric nanocomposite sensor is proposed in this study for monitoring the integrity of inflatable space structures. In particular, CNT-based thin films were fabricated by spraying and then integrated with flexible fabric to form the lightweight sensor. By coupling fabric sensors with an electrical impedance tomography (EIT) algorithm, the fabric's distribution of spatial resistivity can be mapped using only electrical measurements obtained along the material's boundaries. The severity and location of localized pressure and impact damage can be captured by observing changes in the EIT-calculated resistivity maps. They can be embedded in inflatable habitat structures to detect and locate abnormally high pressure regions and impact damage.
UR - http://www.scopus.com/inward/record.url?scp=85013958097&partnerID=8YFLogxK
U2 - 10.1115/SMASIS2016-9029
DO - 10.1115/SMASIS2016-9029
M3 - Conference contribution
AN - SCOPUS:85013958097
T3 - ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016
BT - Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring
PB - American Society of Mechanical Engineers
T2 - ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016
Y2 - 28 September 2016 through 30 September 2016
ER -