Abstract
Lithium-rich composite cathodes have been extensively investigated for lithium-ion batteries. Nanoarchitecture hydroxide precursor for these cathodes with two levels of particle agglomeration (1-2 μm and 10 μm) is produced using a co-precipitation method. Transmission electron microscopy and X-ray diffraction confirm that the precursor is a composite comprising transition metal hydroxides and Mn3O4. Cathode materials synthesized based on the precursor are "layered (R̄3m)-layered (C2/m)-spinel (Fd̄3m)" composite phase. The electrochemical performance of lithium cells utilizing this material as the cathode is determined to be excellent. Both the layered-layered-spinel composite structure and the nanoarchitecture morphology contribute to the electrochemical performance advantage of this material over other cathode materials. Nanoarchitectured hydroxide precursors with two levels of particle agglomerations are synthesized with a continuously stirred tank reactor. Li- and Mn-rich cathodes with a layer-layer-spinel composite structure inherit the morphology of these precursors and exhibit excellent electrochemical performance.
Original language | English |
---|---|
Pages (from-to) | 1070-1075 |
Number of pages | 6 |
Journal | Advanced Functional Materials |
Volume | 23 |
Issue number | 8 |
DOIs | |
State | Published - Feb 25 2013 |
Externally published | Yes |
Keywords
- composite cathodes
- lithium batteries
- nanoarchitectures