Nano-scale indentation measurement of material properties using an area function of the tip geometry

S. Ozcan, K. Farhang, P. Filip

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A novel two-parameter area function for determination of near surface properties of Young's modulus of elasticity and hardness has shown promise for compensating for the imperfection of the tip-end in an instrumented indentation measurement. This paper provides a comprehensive study involving a Berkovitch tip. The tip is utilized in an MTS nanoindentation measurement machine and used to establish load indentation information for fused silica samples. The geometry of the tip is then characterized independently using a highly accurate Atomic Force Microscope. Using the indentation data along with the two-parameter area function methodology, the tip-end radius of curvature is found to provide the most consistent value of modulus of elasticity. Independently, the data from the SEM measurement of the same tip is used to obtain the least squares estimation of the tip curvature. The two approaches yield favorable agreement in the estimation of tip-end radius of curvature. Therefore, the validity of the two-parameter area function method is proved. The method is shown to provide a robust, reliable and accurate measurement of modulus of elasticity and hardness in the nanoscale proximity of a surface.

Original languageEnglish
Title of host publication2008 Proceedings of ASME International Mechanical Engineering Congress and Exposition, IMECE 2008
Pages153-161
Number of pages9
EditionPART A
DOIs
StatePublished - 2009
Externally publishedYes
Event2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008 - Boston, MA, United States
Duration: Oct 31 2008Nov 6 2008

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings
NumberPART A
Volume13

Conference

Conference2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008
Country/TerritoryUnited States
CityBoston, MA
Period10/31/0811/6/08

Fingerprint

Dive into the research topics of 'Nano-scale indentation measurement of material properties using an area function of the tip geometry'. Together they form a unique fingerprint.

Cite this