Nadaraya-Watson estimator for sensor fusion

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

In a system of N sensors, the sensor Sj, j=1,2, . . . , N, outputs Y(j) ∈ [0,1], according to an unknown probability density pj(Y(j)|X), corresponding to input X ∈ [0,1]. A training n-sample (X1, Y1),(X2, Y2), . . . , (Xn, Yn) is given where Yi=(Y(1)i, Y(2)i, . . . , Y(N)i) such that Y(j)i is the output of Sj in response to input Xi. The problem is to estimate a fusion rule f:[0,1]N→[0,1], based on the sample, such that the expected square error I(f) = ∫[X-f(Y)]2p(Y|X)p(X)dY(1) dY(2) . . . dY(N)dX is minimized over a family of functions ℱ with uniformly bounded modulus of smoothness, where Y=(Y(1),Y(2), . . . , Y(N)). Let f* minimize I(.) over ℱ; f* cannot be computed since the underlying densities are unknown. We estimate the sample size sufficient to ensure that Nadaraya-Watson estimator f̂ satisfies P[I(f̂) - I(f*) > ε] < δ for any ε>0 and δ, 0<δ<1.

Original languageEnglish
Pages (from-to)642-647
Number of pages6
JournalOptical Engineering
Volume36
Issue number3
DOIs
StatePublished - Mar 1997

Keywords

  • Empirical estimation
  • Fusion rule estimation
  • Nadaraya-Watson estimator
  • Sensor fusion

Fingerprint

Dive into the research topics of 'Nadaraya-Watson estimator for sensor fusion'. Together they form a unique fingerprint.

Cite this