Abstract
The Bree solution to the problem of a ratcheting cylinder under constant pressure and cyclic thermal load is a fundamental result in nuclear engineering and widely used as the technical basis for the ASME Boiler and Pressure Vessel Code and other design methods. However, because the loading conditions in the Bree problem are difficult to achieve experimentally there have been relatively few works experimentally examining the problem and extending it to other relevant design situations, for example cladded components. In contrast, 2-bar problems are widely studied experimentally and are relatively easy to setup. These 2-bar problems are thought to be representative of Bree-type geometries, but a formal connection has not been demonstrated. This work formally establishes the connection between the Bree cylinder and an n-bar problem – a coupled bar experiment with, in general, more than two bars linked in parallel. The connection suggests that n-bar experiments using a fairly limited number of bars might be an experimentally-accessible setup that better represents ratcheting phenomenon in actual nuclear pressurized components. Such experiments could test surrogate cladded or multi-material components by using bars of different materials. Finally, this work suggests control schemes that yield optimally efficient n-bar experiments – experiments that best replicates a Bree cylinder with a limited number of bars.
Original language | English |
---|---|
Title of host publication | Codes and Standards |
Publisher | American Society of Mechanical Engineers (ASME) |
ISBN (Electronic) | 9780791851593 |
DOIs | |
State | Published - 2018 |
Event | ASME 2018 Pressure Vessels and Piping Conference, PVP 2018 - Prague, Czech Republic Duration: Jul 15 2018 → Jul 20 2018 |
Publication series
Name | American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP |
---|---|
Volume | 1B-2018 |
ISSN (Print) | 0277-027X |
Conference
Conference | ASME 2018 Pressure Vessels and Piping Conference, PVP 2018 |
---|---|
Country/Territory | Czech Republic |
City | Prague |
Period | 07/15/18 → 07/20/18 |
Funding
This manuscript has been co-authored by UChicago Argonne LLC under Contract No. DE-AC02-06CH11357, and by UT-Battelle LLC, under Contract No. DE-AC05-00OR22725, with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, The research was sponsored by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357 with Argonne National Laboratory, managed and operated by UChicago Argonne LLC, and under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle LLC. Programmatic direction was provided by the Office of Nuclear Energy.