TY - GEN
T1 - Muon acceleration with RLA and non-scaling FFAG arcs
AU - Morozov, V. S.
AU - Bogacz, S. A.
AU - Trbojevic, Dejan
PY - 2010
Y1 - 2010
N2 - Recirculating Linear Accelerators (RLA) are the most likely means to achieve the rapid acceleration of shortlived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper, we present a novel return-arc optics design based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice that allows 5 and 9 GeV/c muons of both charges to be transported in the same string of magnets. The return arcs are made up of super cells with each super cell consisting of three triplets. By employing combined function magnets with dipole, quadrupole, sextupole and octupole magnetic field components, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both 5 and 9 GeV/c muon momenta. This solution would reduce the number of arcs by a factor of 2, simplifying the overall design.
AB - Recirculating Linear Accelerators (RLA) are the most likely means to achieve the rapid acceleration of shortlived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper, we present a novel return-arc optics design based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice that allows 5 and 9 GeV/c muons of both charges to be transported in the same string of magnets. The return arcs are made up of super cells with each super cell consisting of three triplets. By employing combined function magnets with dipole, quadrupole, sextupole and octupole magnetic field components, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both 5 and 9 GeV/c muon momenta. This solution would reduce the number of arcs by a factor of 2, simplifying the overall design.
UR - http://www.scopus.com/inward/record.url?scp=84886914040&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84886914040
SN - 9789290833529
T3 - IPAC 2010 - 1st International Particle Accelerator Conference
SP - 3539
EP - 3541
BT - IPAC 2010 - 1st International Particle Accelerator Conference
T2 - 1st International Particle Accelerator Conference, IPAC 2010
Y2 - 23 May 2010 through 28 May 2010
ER -